题目大意:如果一个数含有平方因子,则不是平方自由数,反之则是平方自由数。
思路:在这题了解到一些实用的知识:
若n能被一个数的平方整除,它肯定能被一个素因子的平方p^2整除,为什么呢?因为
如果能被一个偶数的平方整出 由于偶数=2*x 一定含有质数2 故能被质素2的平方整出
假如 一个数能被 一个奇数的平方整除 奇数=质数*x 故能被质素的平方整出
然后求在100W内的素数,为什么是这个范围呢?因为还有一个实用知识点:
性质(一) (n=p1r1p2r2...pkrk (p1<p2<...<pk均为质数,r1,r2,...rk均为正整数)
(1)因为假设P^2是在100W内的话,那么可以在求得素数内验证,如果某一个素数呗整除过2遍的话,则可以跳出
(2)、但如果在100W没跳出的话,证明在100W内除以任一个素数的次数都是小于2的,然后就要出到100W外了
如果是在100W外的话,那么判断能不能开方,能开方则不是平方自由数,因为由性质一知道,在100W外的数如果不是2个数P^2的话,那么剩下P2肯定大于P的,而在100W开外
P^3已经大于10^18次方了,所以如果n在除以100W之内的素数后的n不能开方的话,就是平方自由数,注意等于1的话也不行
整理后的思路:上面的思路有点乱,囧。其实:假设P^2*p=n,假设p最大是P的话,那么P最大是10^6,所以只要枚举前10^6次方的素数,即是验证P是否是小于或等于10^6
假如在把前面的10^6的素数都除遍了,还没有出现P^2的话,即是说假如这个不自由平方数存在的话,那么P^2中的P肯定是大于10^6的,此时的p只能是在小于10^6内出现,这就是说在前面除遍10^6的素数还没出现P^2的话(此时的n已经是把p除掉的n),那么剩下来的数一定是P^2,此时只要验证此时的n能否开方即可
program:
#include<iostream>
#include<math.h>
#include<string.h>
#include<stdio.h>
using namespace std;
int prime[100000];
int flag[1000005];
int main()
{
memset(prime,0,sizeof(prime));
memset(flag,0,sizeof(flag));//
int k=0;
for (int i = 2; i <= 1000000; i++)
if (!flag[i])
{
prime[k++] = i;
for (__int64 j = (__int64)i*i; j <= 1000000; j+= i)
flag[j] = 1;
}
//cout<<"k "<<k<<',';
int test;
__int64 n;
int cas=1;
scanf("%d",&test);
while(test--)
{
scanf("%I64d",&n);//
//cout<<prime[168];
int cnt;
for(int i=1;i<78498;i++)//k=78498
{
cnt=0;
while(n%prime[i]==0)
{
//cout<<" prime[i] n "<<prime[i]<<' '<<n<<endl;
n/=prime[i];
cnt++;
if(cnt==2)
goto end;
}
}
double aa;
__int64 bb;
if(cnt<2)
{
if(n==1)
{
printf("Case %d: Yes\n",cas++);
continue;
}
// printf(" n %I64d \n",n);
aa=sqrt(n*1.0); //取浮点数的全部
// printf(" aa %.20lf \n",aa);
bb=(__int64)aa; //浮点数的整数部分
// printf(" bb %I64d \n",bb);
bb=bb*bb;
// printf(" bb %I64d \n",bb);
//验证能否开方最好的方法就是把开方后的整数再平方回去,
//判断开方时的n和此时平方后的数比较,
//相等则说明n可以开方为整数,大于则说明开方后是无理数
bb=n-bb;
// printf(" bb %I64d \n",bb);
if(bb==0)
{
printf("Case %d: No\n",cas++);
continue;
}//ke kaifang
else
{
printf("Case %d: Yes\n",cas++);
continue;
}//buke kaifang
}
end:
printf("Case %d: No\n",cas++);
}
//system("pause");
return 0;
}