机器视觉初步11:目标分类

本文介绍了三种常用的目标分类方法:基于机器学习(如SVM)、深度学习(如CNN)和聚类(如K-means)。机器学习方法利用训练数据学习模型进行分类,深度学习通过特征提取和模型训练实现高效分类,而聚类方法则将目标分组后再进行分类。这些方法在计算机视觉和图像处理领域广泛应用。
摘要由CSDN通过智能技术生成

目标分类是计算机视觉中一个常见的任务,旨在将图像中的目标物体分类到预定义的类别中。目标分类的常用方法有很多,下面简单介绍其中的几种:
在这里插入图片描述

1. 基于机器学习的目标分类方法

该方法使用机器学习算法对目标进行分类,常用的机器学习算法有支持向量机(SVM)、随机森林(Random Forest)和深度学习等。其中,深度学习是近年来目标分类的热门方法。
原理:基于机器学习的目标分类方法通过训练数据集学习目标分类的模型,该模型能够对新的目标进行分类。
实现方法:使用Python的机器学习库sklearn,可以实现多种机器学习算法。其中,使用scikit-learn的SVM分类器1实现基于机器学习的目标分类方法,示例代码如下:

from sklearn.svm import SVC

# 读取图像数据
image = ...

# 将图像数据划分为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(image, target_class, test_size=0.2, random_state=42)

# 训练SVM分类器
svc = SVC()
svc.fit(X_train, y_train)

# 使用训练好的SVM分类器进行预测
y_pred = svc.predict(X_test)

使用Halcon的RegionProps功能,进行目标类别的标注。

* 标记数据集
dev_update_off ()
dev_close_window ()
dev_open_window_fit_size (0, 0, 1024, 768, -1, -1, WindowHandle)
set_display_font (WindowHandle, 14, "Arial", "", "")
dev_set_draw ("margin")
dev_set_line_width (3)
dev_set_color ("gray")

* 加载图像
read_image (Image, 'data/objects.jpg')

* 图像预处理
gen_empty_obj (H)
* 生成目标区域
gen_cross_contour_xld (Contours, 'crosses', 1, 20, 30)
gen_contour_polygon_xld (Rectangle, Contours, 'lines')
* 标注目标区域
dev_set_color ('red')
dev_display (Image)
dev_display (Rectangle)
region_properties (Rectangle, RegionProperties, 'area', 'centroid', 'mean', 'area', 'max_area', 'opacity')

2. 基于深度学习的目标分类方法

该方法使用深度学习模型对目标进行分类,常用的深度学习模型有卷积神经网络(CNN)、递归神经网络(RNN)和生成对抗网络(GAN)等。其中,CNN在目标分类任务中表现最为优异。
在这里插入图片描述

原理:基于深度学习的目标分类方法通过对大量数据进行训练,学习目标分类的特征表示,并根据这些特征表示对新的目标进行分类。

实现方法:使用深度学习库,如TensorFlow、PyTorch等,可以实现多种深度学习模型。其中,使用tensorflow实现基于CNN的目标分类方法,示例代码如下:

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

# 读取图像数据
image = ...

# 将图像数据划分为训练集和测试集
from tensorflow.keras.models import model_from_json
from tensorflow.keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

# 训练模型
model = Sequential()
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# 训练模型
model.fit(train_datagen.flow_from_directory('training_data', target_size=(28, 28), batch_size=32),
          validation_data=(test_datagen.flow_from_directory('validation_data', target_size=(28, 28), batch_size=32),
                           class_mode='binary'), epochs=5)

# 使用训练好的模型进行预测
y_pred = model.predict(test_datagen.flow_from_directory('test_data', target_size=(28, 28), batch_size=32))

使用Halcon的DeepLearning算子,训练一个卷积神经网络模型进行目标分类。

* 加载数据集
read_image (Image, 'data/objects.jpg')

* 数据预处理
correct_threshold (Image, ImageCorrected, -0.3, 0.3, 1)

* 构建卷积神经网络模型
dev_set_draw ('margin')
dev_set_color ('red')
dev_set_line_width (3)

* 训练卷积神经网络模型
gen_cross_contour_xld (Contours, 'crosses', 1, 20, 30)
gen_contour_polygon_xld (Rectangle, Contours, 'lines')
dev_set_color ('green')
dev_display (ImageCorrected)
dev_display (Rectangle)
dev_display (Image)
dev_display (Contours)

dev_display (Image)
* 预测图像
dev_display (Image)
dev_display (Rectangle)
dev_display (Contours)
dev_set_color ('red')
dev_set_draw ('margin')
dev_set_line_width (3)
dev_display (Image)
dev_display (Rectangle)
dev_display (Contours)
dev_display (Image)
* 预测结果
dev_set_color ('green')
dev_display (ImageCorrected)
dev_display (Rectangle)
dev_display (Contours)
dev_display (Image)
dev_display (Rectangle)
dev_display (Contours)
dev_display (Image)
dev_display (Rectangle)
dev_display (Contours)

3. 基于聚类的目标分类方法

该方法使用聚类方法将目标物体划分为多个聚类,然后根据聚类中心对目标进行分类。常用的聚类算法有K-means、DBSCAN和谱聚类等。
原理:基于聚类的目标分类方法首先对图像中的目标进行聚类,然后根据聚类结果对目标进行分类。
在这里插入图片描述

实现方法:使用聚类库,如OpenCV、scikit-learn等,可以实现多种聚类算法。其中,使用scikit-learn实现基于K-means的目标分类方法,示例代码如下:

from sklearn.cluster import KMeans

# 读取图像数据
image = ...

# 将图像数据划分为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(image, target_class, test_size=0.2, random_state=42)

# 训练K-means聚类模型
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(X_train)

# 使用训练好的K-means聚类模型进行预测
y_pred = kmeans.predict(X_test)

使用Halcon的Clustering算子,将图像数据划分为不同的聚类,然后对每个聚类进行目标分类。

* 加载图像数据
read_image (Image, 'data/objects.jpg')

* 对图像数据进行聚类
gen_empty_obj (ObjList)
cluster_data (Image, ObjList, 'area', 'centroid', 'mean', 'area', 'max_area', 'num_clusters')

* 对聚类结果进行目标分类
for Index := 1 to |ObjList.Clusters| by 1
   dev_display (Image)
   dev_set_color ('red')
   dev_display (ObjList.Clusters.Cluster[Index])
   dev_set_color ('green')
   dev_display (ObjList.Clusters.Cluster[Index])
endfor

以上是目标分类的常用方法及其对应原理。实际应用中,可以根据任务需求选择合适的方法。

除了上述提到的方法,还有一些其他的目标分类方法,如深度特征提取、基于语义的目标分类方法和基于集成学习的目标分类方法。

  1. 深度特征提取方法:该方法使用深度学习模型提取图像的深度特征,如卷积神经网络(CNN)和生成对抗网络(GAN)等。这些深度特征通常能够捕捉目标的复杂结构和纹理信息,从而提高目标分类的准确性。
  2. 基于语义的目标分类方法:该方法通过提取图像中的语义信息,如颜色、形状、纹理等,对目标进行分类。这类方法通常需要使用预训练的深度学习模型,如卷积神经网络(CNN)或转换器(Transformer)模型。
  3. 基于集成学习的目标分类方法:该方法通过将多个分类器的预测结果进行融合,提高目标分类的准确性。常见的集成方法有投票、堆叠和Bagging等。在使用集成学习方法时,需要选择合适的基分类器,如随机森林(Random Forest)或支持向量机(SVM)等。
    以上方法可以相互结合,形成更加高效的目标分类方法。例如,可以先使用基于深度学习的目标分类方法提取图像的深度特征,然后使用基于语义的目标分类方法对特征进行分类,最后使用基于集成学习的方法对结果进行融合和优化。
    在实际应用中,可以根据任务需求和数据特点选择合适的方法组合。为了提高目标分类的性能,可以尝试使用迁移学习、多任务学习和增量学习等方法。

  1. SVM分类器是一种机器学习算法,它用于将数据分为两类。SVM是一种线性分类器,它试图找到一个线性超平面2,以最大化两个类别之间的间距。这个超平面被称为分割面,并且被视为在给定数据点上的最佳分割线。
    SVM分类器通过训练数据来学习这个超平面,并将新的数据点分类为已知类别。它试图最大化在给定的样本数据集上的决策边界,同时保持类别间的间隔最大化。这使得SVM成为一个非常强大的分类器,尤其是在高维度和稀疏数据的情况下。
    SVM分类器可以用于分类和回归任务,因为它可以将数据映射到不同的特征空间,并在每个空间中找到最佳超平面。这使得SVM在许多不同的任务和领域中都非常有用,包括图像分类、文本分类、语音识别和自然语言处理等。 ↩︎

  2. 线性超平面(linear hyperplane)是线性代数中的概念。在一个n维空间中,线性超平面是一个n-1维的向量,它将这个n维空间分为两个部分,使得一个部分中的所有向量都在线性超平面的一侧,另一个部分中的所有向量都在线性超平面的另一侧。
    线性超平面的方程可以表示为:
    w^T* x + b = 0
    其中,w 是一个n-1维的向量,表示线性超平面在x轴上的投影;b 是一个实数,表示线性超平面的法向量。
    如果空间中的两个向量v和w满足 w^T* v + b = 0,那么这两个向量垂直,也称为是线性无关的。在n维空间中,线性无关的向量是唯一的,因此一个n维空间中最多存在一个线性超平面。如果在n维空间中有多个线性超平面,那么它们之间一定存在一个交点。 ↩︎

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值