2/100数据分析实战项目_商城销售数据分析_Python+帆软BI

前言

商城销售数据分析
数据源:https://www.heywhale.com/mw/project/5f7f0c07fab2e800300e51e4/content
BI展示http://localhost:37799/webroot/decision/link/xItL
密码: a600【链接失效:2024年10月31日】

1. 销售数据分析

销售数据分析一般分析什么数据,目的是什么,怎么做销售数据分析

1.1 销售分析目的

常见销售分析目的:

  1. 目的一:评估企业的整体销售情况,把握销售数据目标达成情况。
  2. 目的二:对特定问题进行针对分析,例如为了提升销售额做产品线销售分析,对爆款产品和冷门产品的备货进行调整,冷门产品迎合市场做出调整等等。

1.1.1 从哪些方面入手

  1. 销售趋势与季节性分析:通过对销售数据进行时间序列分析,了解销售额、订单量等指标的整体趋势以及可能存在的季节性变化。这有助于预测销售走势和制定合适的营销策略。
  2. 客户分析:对客户数据进行分析,了解客户的消费行为、购买偏好、消费频次等信息。可以通过客户分群和RFM(最近一次购买时间、购买频率、消费金额)模型,识别高价值客户,并制定相应的客户维护和发展策略。
  3. 产品分析:对销售的产品进行分析,了解不同产品的销售情况、销售额贡献比例、销售渠道效果等。可以通过产品销售排名、ABC分析法等方法,确定热销产品和滞销产品,并据此进行库存规划和产品优化。
  4. 渠道分析:对不同销售渠道的数据进行比较和分析,了解各个渠道的销售表现、转化率、成本效益只等。可以评估渠道的贡献度,优化资源配置,并根据道特点制定营销策略。
  5. 促销活动效果评估:对不同促销活动的数据进行分析,了解促销活动对销售业绩的影响和回报可以分析活动的参与率、转化率、ROI(投资回报率)等指标,以便优化促销策略和资源投入。
  6. 竞争对手分析:通过对竞争对手的销售数据进行比较和分析,了解市场份额、产品定价、促销策略等方面的差异。这有助于确定自身的竞争优势,并制定相应的市场策略。

1.2 销售分析指标体系

指标分类 指标内容
销售效率指标 销售额或销售量、销售增长率和达成率
市场占有率指标 绝对/相对市场占有率
盈利能力指标 销售毛利率、净利率、费用率、成本费用率
营运能力指标 库存周转率、应收账款周转率、滞销库存比率
渠道客户指标-代理商客户指标 客户满意度、客户保持率、新开发客户成本、新客户成长率、渠道客户数量、交货及时率、促销支持度、售后服务效率
渠道客户指标-零售客户指标 来客数、客单价、成交率、连带率、人效、坪效、重点品类销售占比、重点品类毛利占比、促销频率、促销商品销售增长率、滞销单品率
辅助分析指标-效率性指标 人均销售、人均毛利贡献、单位销售回报、订单处理周期
辅助分析指标-结构性指标 区域销售结构、产品销售结构、产品库存结构、费用结构
辅助分析指标-成长性指标 同比增长率、环比增长率、销售完成率、销售增长率、利润增长率
销售过程指标 员工满意度、客情关系、月拜访率、主推率、出样率、新产品上货率、订单缺货率、员工培训次数

销售净利润 = (净利润÷销售收入)×100%
销售增长率 =(本期营业收入增加额÷上期营业收入)×100%
净利润增长率 = (本期净利润增加额÷上期净利润)×100%
营业利润率 = (营业利润÷营业收入)×100%
营业利润增长率 = (本期营业利润增加额 ÷上期营业利润)×100%
成本费用利润率 = (利润总额 ÷成本费用总额)×100%
盈利现金比率 = (经营现金净流量 ÷净利润)×100%
销售收现比率 = (销售商品或提供劳务收到的现金 ÷ 主营业务收入净额)×100%
应收账款周转次数 = 销售收入÷应收账款
应收账款周转天数 = 365 ÷(销售收入 ÷应收账款)
应收账款与收入比 = 应收账款 ÷销售收入
存货周转次数 = 销售成本 ÷平均存货
存货周转天数 = 365 ÷(销售收入 ÷存货)
存货与收入比 = 存货 ÷销售收入

1.2.1 整体销售分析

  1. 销售额/销售量:内部而言进行销量的同环比分析,外部多进行行业标准、市场份额的比较。
    销售额完成率 = 实际销售额÷目标销售额x100%
    毛利率 = (销售额-所有成本额)÷销售额×100%
  2. 季节因素:一些特殊商品有淡旺季的区分,可以通过调查季节对销量的影响,从而优化产品库存。(渠道压货规则及生产运作规则 如肉禽蛋奶产业)
  3. 产品线:分析总体产品结构分布和重点产品的表现,推荐使用波士顿矩阵
  4. 价格体系:分析总体价格结构,找到最优价格区间,提供价格结构调整的合理性建议来合理定价。

1.2.2 区域销售分析

  1. 区域分布:了解区域的总销售排名、销售金额占比、总目标达成情况,从而优化库存管理策略。
  2. 区域产品:明确各大区域下各产品销量和销售金额情况,从而把握地区进货差异。
  3. 区域销售变化:从时间方面把握各大区域的销售情况,找到季节因素在各大区域对产品的影响差
    销售目标完成率 = 各大区实际销售额÷各大区销售目标×100%
  4. 区域拜访:
    客户拜访率 = 已拜访客户数÷所分配线索数

1.2.3 客户分析

  1. 客户分级:根据客户对于企业的贡献率等指标进行衡量与分级,找到贡献率最大的客户。
    绝对客户流失率 = (流失的客户数/所有客户数量)×100%
  2. 客户流失与留存分析:把握具体产品下客户的流失情况。

1.2.4 产品分析

  1. 重点产品:针对重点产品进行分析(如单品销售TOP),即对企业贡献率最大的产品,发现存在问题,提供产品修改意见。
  2. 产品线结构:分析产品系列和单产品结构分布,明确每条产品线的形象产品、主销产品、主利润产品等
  3. 产品-区域分析:通过对产品的销售区域分布的分析,区分战略性产品/技术性产品、全国性产品/区域性产品,为产品的划分和进一步细化提供参考。
  4. 库存分析:考虑有关的货物销售量和库存周转量,并在ABC分析的基础上完成

1.2.5 价格体系分析

  1. 价格体系分析: 划分出符合实际的价格区间划分标准,寻找主导价位。
  2. 价格-产品分析: 主导价位区间的趋势分析,主导价格区间的产品构成以及发育状况,分析主导价位产品成长空间。
  3. 价格-区域分析: 各区域的价位构成分析,寻找各区域的主导价格以及价格层次的产品线战略分布。

1.3 选择分析方法

  1. 对比法:挖掘数据规律的思维,能够和任何技巧结合,主要分为向对比、纵向对比、目标对比、时间对比等;
    - 谁和谁在比
    统一维度 统一度量,比如销售额人民币和美元需要转换同单位
    - 怎么比
    比较对象要有可比性。同量级对比。
    - 比完之后干什么
    对比完后,明白自己所处状态,状态良好就保持,状态相对较差就优化
  2. 象限法:运用坐标的方式,人工对数据进行划分,从而传递数据价值,将之转变为策略。象限法应用很广泛,像RFM模型、波士顿矩阵都是象限法思维。
  3. 漏斗法:本质上是一种流程思路,在确定好关键节点之后,计算节点之间的转化率。这个思路同样适用于很多地方,像电商的用户购买路径分析、app的注册转化率等等。AARRR模型就是以漏斗模型作为基础的。
  4. 二八法:“世界上80%的财富掌握在20%的富人手里”,这就是二八法则,也叫帕累托法则。这个方法的思维就是抓重点,围绕找到的20%有效数据,找到其特征,使之产生更大的效果。
  5. 指数法:通过将无法利用的数据加工成指数,达到聚焦的目的,从而找到方向。但指数法没有统一的标准,比较多依靠经验,一旦设立的话不会经常变动。如果数据没有规律的时候,可以试试这个方法。
  6. 假设法:一般用在进入新领域的时候,没有历史数据参考,没有外部线索,这个时候就需要假设。通过假设的数据进行反推,再去制定计划,整个过程是先假设,后验证,再分析结果
  7. 多维法:通过对数据的切割,分成多个维度,通过立方体的形式进行数据展示。在对数据进行交叉分析的时候,可能会出现辛普森悖论,与之而来的应对方法有钻取、上卷、切片、切块旋转等。

1.3.1 6W2H 列出思考维度

1.3.1.1 What 你卖的是什么产品?

根据具体问题还可以展开,比如:
你的产品线是什么?
你的竞品是什么?
你的替代品互补品各是什么?
你的目标消费者的固有选择是什么?

假设我们现在需要从产品线维度来拆,一般礼品电商公司可能不止卖一种礼品,可能还会卖高端签字笔、望远镜等,那么据此可以拆分的问题就是:各个产品的销售额贡献率是多少?按照二八原则理想状态是80%的销售额来源于20%的产品,我们需要知道爆**款是什么,卖得不好的产品是什么?**细分清楚才能进行下一步的分析,才能了解销售额变动的原因,判断之后的趋势。

1.3.1.2 Who 谁在卖?

比如企业内部是谁在做这款产品的销售?
外部市场上有多少同行在卖同款产品?

如果考虑内部,我们可以把问题拆分成,有哪几个部门在卖?由哪几个项目经理负责销售?他们各自对销售额的贡献情况如何?
如果考虑外部市场,可以分析看看同行的销售额是多少?在同行内的排名情况?

1.3.1.3 Whom 卖给谁

这一步说的是谁是你的客户?客户类型有哪些?谁是使用者?谁是影响者?谁是决策者?消费层次如何?采购频次如何?…

1.3.1.4 When 什么时候购买

客户购买的时间分布有何规律?
比如我们可以比较看看销售额是不是有周期性变动的规律?

1.3.1.5 Where 客户在哪里买

我们可以看看有哪些销售渠道,比如是线上还是线下呢? 如果都是线上,那么是信息流平台还是网上商城?

1.3.1.6 Why 客户购买动机是什么?

客户为什么要买我的产品? 客户消费场景有哪些? 客户的痛点有哪些? 有哪些环境因素影响了客户的购买?

1.3.1.7 How 客户如何购买

这个如何购买可以是对支付方式的研究,比如是货到付款还是先付款后发货?是微信支付还是支付宝支付?
如何购买也可以是营销组合要素如何影响消费者的购买决策,消费者在购买决策的看重哪些因素,是购买的便利性呢?还是产品的设计性?还是价格?

1.3.1.8 How much 客户愿意为产品付出多少成本?

这里就涉及到定价策略了,是采用低价渗透呢?高价撇脂呢?还是歧视定价?
还可以考察一下客户的购买成本是如何构成的,是否包含理解成本、货币成本、风险成本、时间成本、便利成本等。当然具体问题具体分析。


2. 商城销售数据分析_帆软BI

2.1 分析思路

2/100-分析思路1

2.2 可视化

2/100-1
2/100-2
2/100-3
2/100-4
2/100-5
2/100-6
2/100-7
2/100-8

2/100-9
2/100-10
2/100-11

3. 商城销售数据分析_Python

3.1 分析思路

2/100-3分析思路

3.2 分析详情

3.2.1 数据预处理

import pandas  as pd 
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
plt.rcParams['axes.unicode_minus'] = False  ## 解决坐标轴刻度负号乱码
plt.rcParams['font.sans-serif'] = ['Simhei']  ## 解决中文乱码问题## 设置中文显示,KaiTi,FangSong
import warnings
# 忽略所有的 DeprecationWarning 警告
warnings.filterwarnings('ignore', category=DeprecationWarning)
# 这里是可能会产生 DeprecationWarning 警告的代码
warnings.warn("This feature is deprecated", DeprecationWarning)
# 导入数据
data1 = pd.read_excel('商城详细销售数据.xls',sheet_name='订单')
data2 = pd.read_excel('商城详细销售数据.xls',sheet_name='销售人员')
# 参看数据数据形状
print(data1.shape)
print(data2.shape)
# 对订单数据进行处理,删掉不需要的指标
data3= data1.drop(['行 ID', '客户 ID', '产品 ID','产品名称'],axis=1)
#查看字段不同取值
for column in data1.columns:
    print(f"Field: {
     column}")
    print(data1[column].value_counts())
    print("====================")
# 将不同表的数据进行合并
df = pd.merge(data3,data2,how='left',left_on='地区',ri
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值