时间序列初级理论篇

本文深入探讨时间序列分析,从数学特征、平稳性概念出发,讲解AR、MA、ARMA和ARIMA模型,包括模型选择、诊断与预测。通过理论介绍和实例分析,帮助理解时间序列建模流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CSDN:http://blog.csdn.net/kicilove/article/
github:https://github.com/zhaohuicici?tab=repositories

前言

一说起时间序列大家并不会陌生。每时刻的甲醛浓度变化、每日股票闭盘价格、共享单车每日租车数等等都可以看做一系列时间点上的观测,在一系列时间点上观测获取的数据也就是我们俗称的时间序列数据。本文主要介绍常见的AR、MA、ARMA、ARIMA平稳时间序列模型以及时间序列常见的数学特征以及时间序列建模的流程,此篇相对来说偏于理论、偏于公式,下篇会给出一个关于时间序列的Python实例。

下面我们通过两幅图来简单看看时间序列的样子。
图一是2000-2016年美国消费者信心指数
图二是某地在某段时间pm2.5的浓度变化情况;
图三是1949年到1960年某地某航空公司每月乘客数。

这里写图片描述
这里写图片描述

这里写图片描述

可以看出来时间序列数据的形状真的是千奇百怪,但是不管怎么样,要想预测好数据还得见招拆招,根据不同的数据特点做不同的检验,选择不同的模型,确定不同的参数。

1. 数学特征

在介绍模型之前,先看看时间序列数据有啥部件需要我们知晓,下面介绍时间序列的数学特征。像一般的随机变量一样,时间序列也有随机变量序列,也有相应的均值、自协方差、方差、期望、相关系数等,只不过这里我们要加上函数俩字,也就是均值函数、自协方差函数、方差函数、期望函数、相关系数函数,之所以加上函数二字,是因为时间序列对应的这些数学特征变成了时间的函数。来看看它们具体的数学表达式(公式是一个一个敲上去的,如果有手误请指正):

1.1 一般随机变量的数学特征

1.1.1 期望

对于连续型随机变量 X ,有概率密度函数 f(x) ,则定义

E(X)=+f(x)dx

X 的数学期望。

对于离散型的随机变量 X X 的数学期望就是随机变量 X 的取值与发生概率相乘得到的加和,这个是高中知识就不再赘述。

1.1.2 方差

  1. X 施一个随机变量,若 E[XE(X)]2 存在,则称 E[XE(X)] X 的方差,记为 D(X) Var(X) ,即 D(X)=Var(x)=E[XE(X)]2

  2. D(X) 称为 X 的标准差;

  3. X 是离散型随机变量,则 D(X)=k=1[xkE(X)]2pk

  4. X 是连续型随机变量,则 D(X)=[xE(X)]2f(x)dx

补充:

方差的推导关系:
D(X)
=E[XE(X)]2
=EX22XE(X)+[E(X)]2
=E(X2)2E(X)E(X)+[E(X)]2
=E

时间序列理论与方法(第2版)》是由美国Colorado大学统计系著名学者P.J.Brockwell和R.A.Davis在美国国家科学基金资助下所著的一本经典优秀教科书。与国内外同类教材相比,《时间序列理论与方法(第2版)》具有以下特色:1.以Hilbert空间的基本理论和方法为基础阐述时间序列的基本理论与方法,立意新,起点高,论述严谨,主线清晰。2.在随机过程的基本概念、基本理论和方法论述的基础上,既有基本理论和方法的论述,又有应用和研究成果的介绍。便于读者阅读、学习和掌握。3.《时间序列理论与方法(第2版)》还适量地介绍了多维时间序列和非线性时间序列分析的某些新内容,为读者今后进一步学习和科研工作打下良好的数学基础。4.内容安排模块化,可供各种不同层次的读者学习,便于教学。   《时间序列理论与方法(第2版)》分为13章和1个附录(数据集)。主要内容有:平稳时间序列,Hibert空间,平稳ARMA过程,平稳过程的谱表示,平稳过程的预报,渐近理论,均值和自协方差函数的估计,ARMA模型的估计,ARIMA过程的建模和预报,平稳过程的谱推断、多维时间序列,进一步的论题,附录:数据集。《时间序列理论与方法(第2版)》不仅可作为工科和理科本科、研究生教材,而且也为广大工程技术人员和科技工作者提供一本优秀的参考书。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值