上一节记录了注意力机制的基础,这一节主要做几个实现,沐神说qkv在不同任务中的角色不一,所以后续内容才会搞懂qkv是啥玩意。
上节使用了高斯核来对查询和键之间的关系建模。 高斯核指数部分可以视为注意力评分函数(attention scoring function), 简称评分函数(scoring function), 然后把这个函数的输出结果输入到softmax函数中进行运算。 通过上述步骤,将得到与键对应的值的概率分布(即注意力权重)。 最后,注意力汇聚的输出就是基于这些注意力权重的值的加权和。
从宏观来看,上述算法可以用来实现下图中的注意力机制框架。 下图说明了如何将注意力汇聚的输出计算成为值的加权和, 其中
α
\alpha
α
表示注意力评分函数。 由于注意力权重是概率分布, 因此加权和其本质上是加权平均值。
图10.3.1 计算注意力汇聚的输出为值的加权和
用数学语言描述, 假设有一个查询
q
∈
R
q
\mathbf{q} \in \mathbb{R}^q
q∈Rq 和
m
m
m 个“键一值”对
(
k
1
,
v
1
)
,
…
,
(
k
m
,
v
m
)
\left(\mathbf{k}_1, \mathbf{v}_1\right), \ldots,\left(\mathbf{k}_m, \mathbf{v}_m\right)
(k1,v1),…,(km,vm), 其中
k
i
∈
R
k
\mathbf{k}_i \in \mathbb{R}^k
ki∈Rk,
v
i
∈
R
v
\mathbf{v}_i \in \mathbb{R}^v
vi∈Rv 。 注意力汇聚函数
f
f
f 就被表示成值的加权和:
f
(
q
,
(
k
1
,
v
1
)
,
…
,
(
k
m
,
v
m
)
)
=
∑
i
=
1
m
α
(
q
,
k
i
)
v
i
∈
R
v
,
f\left(\mathbf{q},\left(\mathbf{k}_1, \mathbf{v}_1\right), \ldots,\left(\mathbf{k}_m, \mathbf{v}_m\right)\right)=\sum_{i=1}^m \alpha\left(\mathbf{q}, \mathbf{k}_i\right) \mathbf{v}_i \in \mathbb{R}^v,
f(q,(k1,v1),…,(km,vm))=i=1∑mα(q,ki)vi∈Rv,
其中查询
q
\mathbf{q}
q 和键
k
i
\mathbf{k}_i
ki 的注意力权重(标量) 是通过注意力评分函数
a
a
a 将两个向量映射成标量, 再经过 softmax运算得到的:
α
(
q
,
k
i
)
=
softmax
(
a
(
q
,
k
i
)
)
=
exp
(
a
(
q
,
k
i
)
)
∑
j
=
1
m
exp
(
a
(
q
,
k
j
)
)
∈
R
.
\alpha\left(\mathbf{q}, \mathbf{k}_i\right)=\operatorname{softmax}\left(a\left(\mathbf{q}, \mathbf{k}_i\right)\right)=\frac{\exp \left(a\left(\mathbf{q}, \mathbf{k}_i\right)\right)}{\sum_{j=1}^m \exp \left(a\left(\mathbf{q}, \mathbf{k}_j\right)\right)} \in \mathbb{R} .
α(q,ki)=softmax(a(q,ki))=∑j=1mexp(a(q,kj))exp(a(q,ki))∈R.
正如上图所示, 选择不同的注意力评分函数
a
a
a 会导致不同的注意力汇聚操作。本节将介绍两个流行的评分 函数,稍后将用他们来实现更复杂的注意力机制。
import math
import torch
from torch import nn
from d2l import torch as d2l
掩码softmax操作
在某些情况下,并非所有的值都应该被纳入到注意力汇聚中。 例如, 某些文本序列被填充了没有意义的特殊词元。 为了仅将有意义的词元作为值来获取注意力汇聚, 可以指定一个有效序列长度(即词元的个数), 以便在计算softmax时过滤掉超出指定范围的位置。 下面的masked_softmax函数 实现了这样的掩蔽softmax操作(masked softmax operation), 其中任何超出有效长度的位置都被掩蔽并置为0。
#@save
def masked_softmax(X, valid_lens):
"""通过在最后一个轴上掩蔽元素来执行softmax操作"""
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
else:
valid_lens = valid_lens.reshape(-1)
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
value=-1e6)
return nn.functional.softmax(X.reshape(shape), dim=-1)
为了演示此函数是如何工作的, 考虑由两个 2 × 4 2 \times 4 2×4 矩阵表示的样本, 这两个样本的有效长度分别为 2 和 3 。 经过掩蔽softmax操作,超出有效长度的值都被掩蔽为 0 。
masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3]))
'''
tensor([[[0.5980, 0.4020, 0.0000, 0.0000],
[0.5548, 0.4452, 0.0000, 0.0000]],
[[0.3716, 0.3926, 0.2358, 0.0000],
[0.3455, 0.3337, 0.3208, 0.0000]]])
'''
1. 加性注意力
一般来说, 当查询和键是不同长度的矢量时, 可以使用加性注意力作为评分函数。给定查询
q
∈
R
q
\mathbf{q} \in \mathbb{R}^q
q∈Rq 和 键
k
∈
R
k
\mathbf{k} \in \mathbb{R}^k
k∈Rk ,加性注意力 (additive attention) 的评分函数为
a
(
q
,
k
)
=
w
v
⊤
tanh
(
W
q
q
+
W
k
k
)
∈
R
,
a(\mathbf{q}, \mathbf{k})=\mathbf{w}_v^{\top} \tanh \left(\mathbf{W}_q \mathbf{q}+\mathbf{W}_k \mathbf{k}\right) \in \mathbb{R},
a(q,k)=wv⊤tanh(Wqq+Wkk)∈R,
其中可学习的参数是
W
q
∈
R
h
×
q
、
W
k
∈
R
h
×
k
\mathbf{W}_q \in \mathbb{R}^{h \times q} 、 \mathbf{W}_k \in \mathbb{R}^{h \times k}
Wq∈Rh×q、Wk∈Rh×k 和
w
v
∈
R
h
\mathbf{w}_v \in \mathbb{R}^h
wv∈Rh 。如 (10.3.3) 所示, 将查询和键连结起来后 输入到一个多层感知机 (MLP) 中, 感知机包含一个隐藏层, 其隐藏单元数是一个超参数
h
h
h 。通过使用
tanh
\tanh
tanh 作为激活函数, 并且禁用偏置项。
下面来实现加性注意力。
class AdditiveAttention(nn.Module):
"""加性注意力"""
def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
super(AdditiveAttention, self).__init__(**kwargs)
self.W_k = nn.Linear(key_size, num_hiddens, bias=False)
self.W_q = nn.Linear(query_size, num_hiddens, bias=False)
self.w_v = nn.Linear(num_hiddens, 1, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, queries, keys, values, valid_lens):
queries, keys = self.W_q(queries), self.W_k(keys)
# 在维度扩展后,
# queries的形状:(batch_size,查询的个数,1,num_hidden)
# key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)
# 使用广播方式进行求和
features = queries.unsqueeze(2) + keys.unsqueeze(1)
features = torch.tanh(features)
# self.w_v仅有一个输出,因此从形状中移除最后那个维度。
# scores的形状:(batch_size,查询的个数,“键-值”对的个数)
scores = self.w_v(features).squeeze(-1)
self.attention_weights = masked_softmax(scores, valid_lens)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
return torch.bmm(self.dropout(self.attention_weights), values)
2. 缩放点积注意力
使用点积可以得到计算效率更高的评分函数, 无需学习任何参数,但是点积操作要求查询Q和键K具有相同的长度 d ∘ d_{\circ} d∘ 假设查询和 键的所有元素都是独立的随机变量, 并且都满足零均值和单位方差, 那么两个向量的点积的均值为 0 , 方 差为 d d d 。
解释:点积是向量对应位置相乘再相加。两个独立的N(0,1)的随机变量相乘得到的变量方差还是1。Q,K都是d维, 相加步骤是d个方差为1的变量相加,方差就是d了。
为确保无论向量长度如何, 点积的方差在不考虑向量长度的情况下仍然是 1 , 我们再将点积除以
d
\sqrt{d}
d, 则缩放点积注意力 (scaled dot-product attention) 评分函数为:
a
(
q
,
k
)
=
q
⊤
k
/
d
.
a(\mathbf{q}, \mathbf{k})=\mathbf{q}^{\top} \mathbf{k} / \sqrt{d} .
a(q,k)=q⊤k/d.
在实践中, 我们通常从小批量的角度来考虑提高效率, 例如基于
n
n
n 个查询和
m
m
m 个键一值对计算注意力, 其 中查询和键的长度为
d
d
d, 值的长度为
v
v
v 。 查询
Q
∈
R
n
×
d
\mathbf{Q} \in \mathbb{R}^{n \times d}
Q∈Rn×d 、键
K
∈
R
m
×
d
\mathbf{K} \in \mathbb{R}^{m \times d}
K∈Rm×d 和 值
V
∈
R
m
×
v
\mathbf{V} \in \mathbb{R}^{m \times v}
V∈Rm×v 的缩放点积注意 力是:
softmax
(
Q
K
⊤
d
)
V
∈
R
n
×
v
.
\operatorname{softmax}\left(\frac{\mathbf{Q K}^{\top}}{\sqrt{d}}\right) \mathbf{V} \in \mathbb{R}^{n \times v} .
softmax(dQK⊤)V∈Rn×v.
下面的缩放点积注意力的实现使用了暂退法(dropout)进行模型正则化。
#@save
class DotProductAttention(nn.Module):
"""缩放点积注意力"""
def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
# queries的形状:(batch_size,查询的个数,d)
# keys的形状:(batch_size,“键-值”对的个数,d)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
# valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
def forward(self, queries, keys, values, valid_lens=None):
d = queries.shape[-1]
# 设置transpose_b=True为了交换keys的最后两个维度
scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
self.attention_weights = masked_softmax(scores, valid_lens)
return torch.bmm(self.dropout(self.attention_weights), values)