Transformer-2. 注意力分数

本文介绍了注意力机制中的评分函数,包括加性注意力和缩放点积注意力,以及如何通过掩码softmax处理填充序列。通过多层感知机映射查询和键,并利用softmax和掩码操作生成注意力权重,最后实现值的加权和输出。
摘要由CSDN通过智能技术生成

上一节记录了注意力机制的基础,这一节主要做几个实现,沐神说qkv在不同任务中的角色不一,所以后续内容才会搞懂qkv是啥玩意。

上节使用了高斯核来对查询和键之间的关系建模。 高斯核指数部分可以视为注意力评分函数(attention scoring function), 简称评分函数(scoring function), 然后把这个函数的输出结果输入到softmax函数中进行运算。 通过上述步骤,将得到与键对应的值的概率分布(即注意力权重)。 最后,注意力汇聚的输出就是基于这些注意力权重的值的加权和。

从宏观来看,上述算法可以用来实现下图中的注意力机制框架。 下图说明了如何将注意力汇聚的输出计算成为值的加权和, 其中 α \alpha α
表示注意力评分函数。 由于注意力权重是概率分布, 因此加权和其本质上是加权平均值。

图10.1.3

               图10.3.1 计算注意力汇聚的输出为值的加权和

用数学语言描述, 假设有一个查询 q ∈ R q \mathbf{q} \in \mathbb{R}^q qRq m m m 个“键一值”对 ( k 1 , v 1 ) , … , ( k m , v m ) \left(\mathbf{k}_1, \mathbf{v}_1\right), \ldots,\left(\mathbf{k}_m, \mathbf{v}_m\right) (k1,v1),,(km,vm), 其中 k i ∈ R k \mathbf{k}_i \in \mathbb{R}^k kiRk, v i ∈ R v \mathbf{v}_i \in \mathbb{R}^v viRv 。 注意力汇聚函数 f f f 就被表示成值的加权和:
f ( q , ( k 1 , v 1 ) , … , ( k m , v m ) ) = ∑ i = 1 m α ( q , k i ) v i ∈ R v , f\left(\mathbf{q},\left(\mathbf{k}_1, \mathbf{v}_1\right), \ldots,\left(\mathbf{k}_m, \mathbf{v}_m\right)\right)=\sum_{i=1}^m \alpha\left(\mathbf{q}, \mathbf{k}_i\right) \mathbf{v}_i \in \mathbb{R}^v, f(q,(k1,v1),,(km,vm))=i=1mα(q,ki)viRv,
其中查询 q \mathbf{q} q 和键 k i \mathbf{k}_i ki 的注意力权重(标量) 是通过注意力评分函数 a a a 将两个向量映射成标量, 再经过 softmax运算得到的:
α ( q , k i ) = softmax ⁡ ( a ( q , k i ) ) = exp ⁡ ( a ( q , k i ) ) ∑ j = 1 m exp ⁡ ( a ( q , k j ) ) ∈ R . \alpha\left(\mathbf{q}, \mathbf{k}_i\right)=\operatorname{softmax}\left(a\left(\mathbf{q}, \mathbf{k}_i\right)\right)=\frac{\exp \left(a\left(\mathbf{q}, \mathbf{k}_i\right)\right)}{\sum_{j=1}^m \exp \left(a\left(\mathbf{q}, \mathbf{k}_j\right)\right)} \in \mathbb{R} . α(q,ki)=softmax(a(q,ki))=j=1mexp(a(q,kj))exp(a(q,ki))R.
正如上图所示, 选择不同的注意力评分函数 a a a 会导致不同的注意力汇聚操作。本节将介绍两个流行的评分 函数,稍后将用他们来实现更复杂的注意力机制。

import math
import torch
from torch import nn
from d2l import torch as d2l

掩码softmax操作

在某些情况下,并非所有的值都应该被纳入到注意力汇聚中。 例如, 某些文本序列被填充了没有意义的特殊词元。 为了仅将有意义的词元作为值来获取注意力汇聚, 可以指定一个有效序列长度(即词元的个数), 以便在计算softmax时过滤掉超出指定范围的位置。 下面的masked_softmax函数 实现了这样的掩蔽softmax操作(masked softmax operation), 其中任何超出有效长度的位置都被掩蔽并置为0。

#@save
def masked_softmax(X, valid_lens):
    """通过在最后一个轴上掩蔽元素来执行softmax操作"""
    # X:3D张量,valid_lens:1D或2D张量
    if valid_lens is None:
        return nn.functional.softmax(X, dim=-1)
    else:
        shape = X.shape
        if valid_lens.dim() == 1:
            valid_lens = torch.repeat_interleave(valid_lens, shape[1])
        else:
            valid_lens = valid_lens.reshape(-1)
        # 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
        X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
                              value=-1e6)
        return nn.functional.softmax(X.reshape(shape), dim=-1)

为了演示此函数是如何工作的, 考虑由两个 2 × 4 2 \times 4 2×4 矩阵表示的样本, 这两个样本的有效长度分别为 2 和 3 。 经过掩蔽softmax操作,超出有效长度的值都被掩蔽为 0 。

masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3]))

'''
   tensor([[[0.5980, 0.4020, 0.0000, 0.0000],
         [0.5548, 0.4452, 0.0000, 0.0000]],

        [[0.3716, 0.3926, 0.2358, 0.0000],
         [0.3455, 0.3337, 0.3208, 0.0000]]])
'''

1. 加性注意力

一般来说, 当查询和键是不同长度的矢量时, 可以使用加性注意力作为评分函数。给定查询 q ∈ R q \mathbf{q} \in \mathbb{R}^q qRq 和 键 k ∈ R k \mathbf{k} \in \mathbb{R}^k kRk ,加性注意力 (additive attention) 的评分函数为
a ( q , k ) = w v ⊤ tanh ⁡ ( W q q + W k k ) ∈ R , a(\mathbf{q}, \mathbf{k})=\mathbf{w}_v^{\top} \tanh \left(\mathbf{W}_q \mathbf{q}+\mathbf{W}_k \mathbf{k}\right) \in \mathbb{R}, a(q,k)=wvtanh(Wqq+Wkk)R,
其中可学习的参数是 W q ∈ R h × q 、 W k ∈ R h × k \mathbf{W}_q \in \mathbb{R}^{h \times q} 、 \mathbf{W}_k \in \mathbb{R}^{h \times k} WqRh×qWkRh×k w v ∈ R h \mathbf{w}_v \in \mathbb{R}^h wvRh 。如 (10.3.3) 所示, 将查询和键连结起来后 输入到一个多层感知机 (MLP) 中, 感知机包含一个隐藏层, 其隐藏单元数是一个超参数 h h h 。通过使用 tanh ⁡ \tanh tanh 作为激活函数, 并且禁用偏置项。
下面来实现加性注意力。

class AdditiveAttention(nn.Module):
    """加性注意力"""
    def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
        super(AdditiveAttention, self).__init__(**kwargs)
        self.W_k = nn.Linear(key_size, num_hiddens, bias=False)
        self.W_q = nn.Linear(query_size, num_hiddens, bias=False)
        self.w_v = nn.Linear(num_hiddens, 1, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, queries, keys, values, valid_lens):
        queries, keys = self.W_q(queries), self.W_k(keys)
        # 在维度扩展后,
        # queries的形状:(batch_size,查询的个数,1,num_hidden)
        # key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)
        # 使用广播方式进行求和
        features = queries.unsqueeze(2) + keys.unsqueeze(1)
        features = torch.tanh(features)
        # self.w_v仅有一个输出,因此从形状中移除最后那个维度。
        # scores的形状:(batch_size,查询的个数,“键-值”对的个数)
        scores = self.w_v(features).squeeze(-1)
        self.attention_weights = masked_softmax(scores, valid_lens)
        # values的形状:(batch_size,“键-值”对的个数,值的维度)
        return torch.bmm(self.dropout(self.attention_weights), values)

2. 缩放点积注意力

使用点积可以得到计算效率更高的评分函数, 无需学习任何参数,但是点积操作要求查询Q和键K具有相同的长度 d ∘ d_{\circ} d 假设查询和 键的所有元素都是独立的随机变量, 并且都满足零均值和单位方差, 那么两个向量的点积的均值为 0 , 方 差为 d d d

解释:点积是向量对应位置相乘再相加。两个独立的N(0,1)的随机变量相乘得到的变量方差还是1。Q,K都是d维, 相加步骤是d个方差为1的变量相加,方差就是d了。

为确保无论向量长度如何, 点积的方差在不考虑向量长度的情况下仍然是 1 , 我们再将点积除以 d \sqrt{d} d , 则缩放点积注意力 (scaled dot-product attention) 评分函数为:
a ( q , k ) = q ⊤ k / d . a(\mathbf{q}, \mathbf{k})=\mathbf{q}^{\top} \mathbf{k} / \sqrt{d} . a(q,k)=qk/d .
在实践中, 我们通常从小批量的角度来考虑提高效率, 例如基于 n n n 个查询和 m m m 个键一值对计算注意力, 其 中查询和键的长度为 d d d, 值的长度为 v v v 。 查询 Q ∈ R n × d \mathbf{Q} \in \mathbb{R}^{n \times d} QRn×d 、键 K ∈ R m × d \mathbf{K} \in \mathbb{R}^{m \times d} KRm×d 和 值 V ∈ R m × v \mathbf{V} \in \mathbb{R}^{m \times v} VRm×v 的缩放点积注意 力是:
softmax ⁡ ( Q K ⊤ d ) V ∈ R n × v . \operatorname{softmax}\left(\frac{\mathbf{Q K}^{\top}}{\sqrt{d}}\right) \mathbf{V} \in \mathbb{R}^{n \times v} . softmax(d QK)VRn×v.
下面的缩放点积注意力的实现使用了暂退法(dropout)进行模型正则化。

#@save
class DotProductAttention(nn.Module):
    """缩放点积注意力"""
    def __init__(self, dropout, **kwargs):
        super(DotProductAttention, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)

    # queries的形状:(batch_size,查询的个数,d)
    # keys的形状:(batch_size,“键-值”对的个数,d)
    # values的形状:(batch_size,“键-值”对的个数,值的维度)
    # valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
    def forward(self, queries, keys, values, valid_lens=None):
        d = queries.shape[-1]
        # 设置transpose_b=True为了交换keys的最后两个维度
        scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
        self.attention_weights = masked_softmax(scores, valid_lens)
        return torch.bmm(self.dropout(self.attention_weights), values)
Transformer文本分类中,注意力分数是指通过计算每个输入元素的权重,来衡量输入元素对于分类任务的重要性。这些权重决定了模型在进行分类时应该关注哪些部分的输入。通过注意力分数Transformer可以自动学习到不同输入元素之间的关联程度,并据此为每个元素分配不同的权重。 具体来说,在Transformer中,注意力分数是通过自注意力机制计算得出的。自注意力机制允许模型根据输入元素之间的相互作用来计算上下文感知的嵌入向量。这个过程包括以下几个步骤: 1. 首先,通过对输入序列进行线性映射,得到查询(query)、键(key)和值(value)的表示。 2. 接下来,计算查询和键之间的相似度得分,可以使用点积或其他方法来计算相似度。 3. 使用相似度得分对值进行加权求和,得到注意力分数。 4. 最后,将注意力分数与值进行加权求和,得到最终的上下文感知嵌入向量。 总之,注意力分数Transformer文本分类中起着关键作用,它衡量了每个输入元素对于分类任务的重要性,并通过自注意力机制来计算和利用这些权重。这使得Transformer能够更好地捕捉文本数据中的长距离依赖关系,从而提高分类和情感分析的准确性和效率。 <span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span> #### 引用[.reference_title] - *1* *2* *3* [利用Transformer实现文本分类及情感分析技术](https://blog.csdn.net/universsky2015/article/details/131693154)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *4* [【NLP】Transformer—用注意力机制改进自然语言处理](https://blog.csdn.net/sikh_0529/article/details/127017111)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值