观测:对事物形成客观量化的认知
获取数据,生成报表、图表、仪表盘
实验:发现规律、验证假设
提出假设、实践假设、基于观测的数据去验证假设
应用:不断基于数据反馈迭代产品
利用实验得到的方法有效地提高生产力
数据分析的全貌
观测
- 采集数据
- 储存数据
- 展示数据
采集数据:解析系统日志
采集数据:埋点获取新数据
埋点:即获取新数据的主要方式,也是最可靠的方式。
采集数据:通过传感器采集
采集数据:爬虫
采集数据:API(Application Programming Interface)
储存数据:各种类型的数据库
储存数据:连接数据库取数
展示数据:可视化高效传达信息
测量
- 设定标准
- 发现异常
- 研究关系
分析数据的目的是什么?
1.及时发现异常
2.找到数据之间的因果关系
数据是客观统一的
在任何人眼里:1+1=2,有统一的认知才能有共同的目标
设定标准+发现异常
研究关系
实验:提出假设,然后验证假设
总结
所有未经事实数据验证的想法都是假设
设计A/B测试获取数据
思考
- 如何在业务只有少量数据时设计数据实验?
- 如何在无法同时测试两个版本时比较数据?
应用
如何应用数据创造价值?
一、基于数据反馈不断迭代产品和业务策略
二、基于数据训练算法,让机器自动化地完成工作
拆解方法
将数据应用于算法
思考
- 为什么要分析数据?
- 数据分析如何实现?
- 如何进行A/B测试?
- 有哪些分析框架和方法?
- 如何基于数据创造价值?
- 如何基于数据训练算法?
文献
戴戴戴师兄