为什么说计算机其实是逻辑机器?《逻辑的引擎》阅读笔迹

探讨了布尔、弗雷格及康托尔等人的贡献如何推动逻辑学与数学的发展,特别是逻辑学作为数学分支的可能性,以及数理逻辑如何促进数学推理的形式化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《逻辑的引擎》阅读笔迹
p27

在英国,当布尔开始自己的工作时,人们以及渐渐认识到代数的力量来自于这样一个事实,即代表着量和运算的符号服从不多的几条基本规则或定律。这就暗示着,同样的力量也可适用于形形色色的对象和运算,只要它们也服从着其中某些同样的定律。

yy=y.
布尔对这个的理解简直神了。
x(1-x)=0
意思时:没有任何东可以既属于又不属于一个给定的类x

p40

也许可以认为数学极为系统地概况了极为复杂的逻辑推理,所以想要对一种以完备性味目标的逻辑理论进行最终的检验,就要看它是否包含了一切数学推理。

p42

乔治布尔的伟大成就是一劳永逸地证明了逻辑演绎可以成为数学的一个分支。尽管在亚里士多德的先驱工作之后,逻辑学上曾经有过某些发展,但布尔却发现这门学科本质上仍然是2000年亚里士多德之后的样子。布尔之后,数理逻辑就处于不断发展之中了。

弗雷格的贡献极为重要。他提出了把普通数学中一切演绎推理都包含在内的第一个完备的逻辑体系,他用逻辑分析工具来研究语言的开拓性工作为哲学的主要发展提供了基础。

弗雷格的《概念文字》。副标题为:一种模仿算术语言构造的纯思维的形式语言。弗雷格试图找到一个能够包含数学实践中全部演绎推理的逻辑系统。布尔曾经认为用于表示其他命题之间的关系的命题是二阶命题,在这里,弗雷格发现那些连接命题的关系也可以被用于分析命题的结构,他把这些关系充当了他逻辑的基

础。
出现了:
所有的/
存在一个/
如果那么的推导/
且/
或/
非/
如上六种符号

F(X)可以表示X是一个失败的学生
S(X)表示X是糊涂的
L(X)表示X是懒惰的
L(X,Y)表示X爱Y

康托尔不得不把无穷集当作完成了的整体来处理,并且对其进行复杂的运算。不久,他就把集合了发展成了一门独立的学科。
康托尔也和莱布尼茨一样免了一个问题:或者谈论一个无限集中元素的数目是没有意义的,或者某些无限集与它的一个子集具有相同的元素数目。康托尔想要发展一种能够应用于无限集的关于数的理论,这种理论恰恰认为一个无限集将于它的一个部分拥有同样多的元素数目。

后来,康托尔证明了实数集无法于自然数集之间建立一一对应,无限集至少有两种大小。代数数可以于自然数一一对应,但实数则不行。所以实数集和代数集是不同的。因此就必定存在一个实数不是代数数,于是它就是超越数。

基数与序数。 基数是一二三,序数是第一、第二、第三。 基数用于指明某个集合中有多少东西,序数用于指明这些东西是如何以一定的次序排列的。

p107

在希尔伯特的新纲领种,数学与逻辑将通过一种纯形式的符号语言被发展处理。这样一种语言可以从内部和外部来看。从内部看,它就是数学,每一步演绎都可以完全弄清楚。但从外部看,它仅仅是许多公式和符号操作,它们可以在不考虑意义的情况下进行处理。这里的任务是要证明,从这种语言种导出的任何两个公式都不会彼此矛盾,或者等价的说,像1=0或0不等于0这样的公式是不可能导出的。

p119

维特根斯坦所关注的这些东西与希尔伯特的立场相当一致,它们都认为形式逻辑系统不仅可以在系统内部表达数学推理,而且还可以从系统外部用数学方法加以研究。

p123

希尔伯特期望这样一种证明:如果一个推理具有如下属性: 不论对公式中的字母做何种解释,只要其前提是真陈述,则它的结论就是真的。

这个经典呀,学习计算机的都应该看下 书名:逻辑引擎   作者:(美)马丁·戴维斯   出版社:湖南科学技术出版社   本书讲述的是我们的现代计算机所基于的那些基本概念和发展出这些概念的人。计算机从二十世纪五十年代的塞满整个房间的庞然大物,逐渐演变成今天轻巧而强大的能够完成各种任务的机器,在这整个过程中,其背后的逻辑始终保持如一。这些逻辑概念是几个世纪以来数位天才思想家一步步发展出来的。在本书中,我将讲述这些人的生活故事,并解释他们的部分思想。这些故事本身是引人入胜的,我希望读者们不仅能够喜欢它们,而且在读完之后能够更加了解计算机内部的秘密,同时对抽象思想的价值多一份敬意。   本书作者马丁·戴维斯是计算机科学发展史上的先区人物,曾对希尔伯特第十问题有过深入的研究。本书被誉从逻辑角度讲述计算机发展的最好的通俗读本。读者将对西方文化的核心之一——逻辑或数学有更深的理解,并且造就一种敏锐的眼光和问题意识,认识到再复杂的东西其实也是由简单的东西根据一定的规则组合而成的。在普遍崇拜技术外表而忽视其深层本质的今天,本书显得尤为难得和重要。本书讲述了位于计算机背后的思想层面的历史。它通过引人入胜的材料描写了莱布尼茨、布尔、康托尔、希尔伯特、哥德尔、图灵等天才的生活和工作,讲述了数学家们如何在成果付诸应用之前很久就已经提出了其背后的思想
参考资源链接:[Python计算机视觉答题卡识别判分系统实现](https://wenku.csdn.net/doc/66xcmafcp9?utm_source=wenku_answer2doc_content) 为了确保答题卡图像能够被准确识别,图像预处理和特征提取是至关重要的步骤。首先,我们需要对答题卡图像进行灰度化处理,这可以简化图像数据并减少后续处理的复杂度。接着,应用二值化处理,将图像转换为黑白两色,以突出答题卡上的标记。此外,去噪操作有助于清除图像中的不必要的干扰信息,如扫描时产生的噪音或笔迹上的阴影。 在图像预处理之后,我们需要提取出答题卡的关键特征。对于选择题,重点是识别涂鸦标记的位置,这通常涉及到轮廓检测和模式匹配算法。对于填空题,我们需要运用OCR(光学字符识别)技术来识别手写或印刷的文字。在某些情况下,可能还需要应用机器学习或深度学习模型来提高识别的准确率,例如使用卷积神经网络(CNN)来识别复杂的图像模式。 这个过程中,Python的OpenCV库是一个强大的工具,它提供了丰富的图像处理函数。而Pillow(PIL)库则可以用于图像的基本操作。至于特征提取和识别部分,可以利用如Tesseract OCR引擎来实现文字识别,或者使用专门的机器学习库,如scikit-image和TensorFlow,来进行更复杂的图像分析和识别。 在整个系统中,Django框架负责管理Web层面的任务,如用户交互和数据展示,而图像处理和识别逻辑则主要由Python脚本和相关库来完成。实现这一系统的过程中,不断测试和优化算法是至关重要的,以确保系统能够在不同条件和答题卡质量下都能保持较高的准确率和鲁棒性。 参考资源链接:[Python计算机视觉答题卡识别判分系统实现](https://wenku.csdn.net/doc/66xcmafcp9?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值