《逻辑的引擎》阅读笔迹
p27
在英国,当布尔开始自己的工作时,人们以及渐渐认识到代数的力量来自于这样一个事实,即代表着量和运算的符号服从不多的几条基本规则或定律。这就暗示着,同样的力量也可适用于形形色色的对象和运算,只要它们也服从着其中某些同样的定律。
yy=y.
布尔对这个的理解简直神了。
x(1-x)=0
意思时:没有任何东可以既属于又不属于一个给定的类x
p40
也许可以认为数学极为系统地概况了极为复杂的逻辑推理,所以想要对一种以完备性味目标的逻辑理论进行最终的检验,就要看它是否包含了一切数学推理。
p42
乔治布尔的伟大成就是一劳永逸地证明了逻辑演绎可以成为数学的一个分支。尽管在亚里士多德的先驱工作之后,逻辑学上曾经有过某些发展,但布尔却发现这门学科本质上仍然是2000年亚里士多德之后的样子。布尔之后,数理逻辑就处于不断发展之中了。
弗雷格的贡献极为重要。他提出了把普通数学中一切演绎推理都包含在内的第一个完备的逻辑体系,他用逻辑分析工具来研究语言的开拓性工作为哲学的主要发展提供了基础。
弗雷格的《概念文字》。副标题为:一种模仿算术语言构造的纯思维的形式语言。弗雷格试图找到一个能够包含数学实践中全部演绎推理的逻辑系统。布尔曾经认为用于表示其他命题之间的关系的命题是二阶命题,在这里,弗雷格发现那些连接命题的关系也可以被用于分析命题的结构,他把这些关系充当了他逻辑的基
础。
出现了:
所有的/
存在一个/
如果那么的推导/
且/
或/
非/
如上六种符号
F(X)可以表示X是一个失败的学生
S(X)表示X是糊涂的
L(X)表示X是懒惰的
L(X,Y)表示X爱Y
康托尔不得不把无穷集当作完成了的整体来处理,并且对其进行复杂的运算。不久,他就把集合了发展成了一门独立的学科。
康托尔也和莱布尼茨一样免了一个问题:或者谈论一个无限集中元素的数目是没有意义的,或者某些无限集与它的一个子集具有相同的元素数目。康托尔想要发展一种能够应用于无限集的关于数的理论,这种理论恰恰认为一个无限集将于它的一个部分拥有同样多的元素数目。后来,康托尔证明了实数集无法于自然数集之间建立一一对应,无限集至少有两种大小。代数数可以于自然数一一对应,但实数则不行。所以实数集和代数集是不同的。因此就必定存在一个实数不是代数数,于是它就是超越数。
基数与序数。 基数是一二三,序数是第一、第二、第三。 基数用于指明某个集合中有多少东西,序数用于指明这些东西是如何以一定的次序排列的。
p107
在希尔伯特的新纲领种,数学与逻辑将通过一种纯形式的符号语言被发展处理。这样一种语言可以从内部和外部来看。从内部看,它就是数学,每一步演绎都可以完全弄清楚。但从外部看,它仅仅是许多公式和符号操作,它们可以在不考虑意义的情况下进行处理。这里的任务是要证明,从这种语言种导出的任何两个公式都不会彼此矛盾,或者等价的说,像1=0或0不等于0这样的公式是不可能导出的。
p119
维特根斯坦所关注的这些东西与希尔伯特的立场相当一致,它们都认为形式逻辑系统不仅可以在系统内部表达数学推理,而且还可以从系统外部用数学方法加以研究。
p123
希尔伯特期望这样一种证明:如果一个推理具有如下属性: 不论对公式中的字母做何种解释,只要其前提是真陈述,则它的结论就是真的。