用Keras.NET 做一个图像识别的训练

本文介绍了如何在.NET Core环境中使用Keras.NET进行图像识别的深度学习训练。首先解释了Keras是一个Python编写的高层神经网络API,通过Tensorflow等后端运行。接着详细阐述了如何在不同平台上配置Keras.NET和Numpy.NET,特别是如何解决Python环境变量和依赖库的问题。然后提供了一个经典的猫狗分类图像识别示例,包括环境设置、CNN算法定义、数据整理、训练和保存模型的过程。最后强调了在Jupyter Notebook中进行C#代码实验的好处,鼓励.NET开发者利用Keras.NET探索机器学习/深度学习。
摘要由CSDN通过智能技术生成

  .NET Core 的应用场景越来越广,开源社区也不断壮大, .NET Core在机器学习领域不断发展ML.NET外,也通过结合Tensorflow.NET去完善ML.NET在深度学习领域的功能,在ML.NET 1.3开始迈出了非常重要的一步。这不仅是微软拥抱开源的策略,也是对SciSharp社区的认可。SciSharp社区不仅有Tensorlow.NET优秀的产品,也有很多对基于Python机器学习/深度学习库的封装,这补充了现阶段ML.NET在发展阶段功能不全的缺陷,也让更成熟的机器学习/深度学习方案应用在.NET Core的生产环境中。今天我会介绍一下Keras.NET并通过Keras.NET做一个图像识别的深度学习训练。

       什么是Keras?  

        Keras是一个用Python编写通过Tensorflow、PlaidML以及CNTK作为后端的高层神经网络API。Keras让你用最简单的方式快速完成深度学习(https://keras-cn.readthedocs.io/en/latest/) 。 不少人喜欢用Keras进行模型训练。 ScipySharp社区也对 Keras通过pythonnet进行了封装(https://github.com/SciSharp/Keras.NET) 。

       如何用Keras.NET?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值