.NET Core 的应用场景越来越广,开源社区也不断壮大, .NET Core在机器学习领域不断发展ML.NET外,也通过结合Tensorflow.NET去完善ML.NET在深度学习领域的功能,在ML.NET 1.3开始迈出了非常重要的一步。这不仅是微软拥抱开源的策略,也是对SciSharp社区的认可。SciSharp社区不仅有Tensorlow.NET优秀的产品,也有很多对基于Python机器学习/深度学习库的封装,这补充了现阶段ML.NET在发展阶段功能不全的缺陷,也让更成熟的机器学习/深度学习方案应用在.NET Core的生产环境中。今天我会介绍一下Keras.NET并通过Keras.NET做一个图像识别的深度学习训练。
什么是Keras?
Keras是一个用Python编写通过Tensorflow、PlaidML以及CNTK作为后端的高层神经网络API。Keras让你用最简单的方式快速完成深度学习(https://keras-cn.readthedocs.io/en/latest/) 。 不少人喜欢用Keras进行模型训练。 ScipySharp社区也对 Keras通过pythonnet进行了封装(https://github.com/SciSharp/Keras.NET) 。
如何用Keras.NET?