应用概率统计-第四章 随机变量的数字特征1-数学期望

目录

一、随机变量的数学期望

1、数学期望的定义:

定义一:

定义二:

2、常见分布的数学期望:

3、随机变量函数的数学期望

(一)离散变量函数Y=g(X)的数学期望:

(二)连续变量函数f(x)的数学期望:

4、数学期望的性质


随机变量的数学期望

1、数学期望的定义:

(不是所有的 r.v.都有数学期望)

定义一:

设 X 为离散 r.v.  其分布列为P(X=X_K{})=P_K{},若无穷级数\sum_{k=1}^{+\infty }\,x _k{}p_k{}绝对收敛,则称其和为X的数学期望,记为E(X)

                      ​​​​E(X)=\sum_{k=1}^{+\infty }\,x _k{}p_k{}

定义二:

设连续 r.v. X 的 d.f. 为f(x),若广义积分\int_{-\infty }^{+\infty }xf(x)dx绝对收敛,则称此积分为 X 的数学期望 记作 E( X ), 即

                ​​​​​​​   E(X)=\int_{-\infty }^{+\infty }xf(x)dx

2、常见分布的数学期望:

  • 二项分布:X~B(n,p)         E(X)=np
  • 0--1分布: X~B(p)            E(X)=p
  • 泊松分布:X~P(\lambda)            E(X)=\lambda

3、随机变量函数的数学期望

  • 设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?

(一)离散变量函数Y=g(X)的数学期望:

设离散 r.v. X 的概率分布为P(X=X_K{})=P_K{},若无穷级数\sum_{k=1}^{+\infty }\,g(x) _k{}p_k{}绝对收敛则

        ​​​​​​​        E(X)=\sum_{k=1}^{+\infty }\,g(x) _k{}p_k{}

(二)连续变量函数f(x)的数学期望:

设连续 r.v. X 的 d.f. 为 f (x),若广义积分\int_{-\infty }^{+\infty }g(x)f(x)dx绝对收敛,则

        ​​​​​​​        E(X)=\int_{-\infty }^{+\infty }g(x)f(x)dx

4、数学期望的性质

  • 设C是常数,则E(C)=C;
  • 若C是常数,则E(CX)=CE(X);
  • E(X+Y) = E(X)+E(Y);

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值