应用概率统计-第三章 连续型随机变量及其分布

目录

一、连续型随机变量

1、定义:

二、正态分布

1、定义:

 2、正态分布的图形特点:

 3、标准正太分布:X~N (0,1)

三、指数分布

  1、 密度函数:

   2、  分布函数:

 3、指数分布的”无记忆性“

 四、均匀分布 X~U(a,b)

1、密度函数:

2、分布函数 :

 3、函数图形

 五、随机变量函数的分布(重难点)

1、方法一

2、方法二 

 3、例题

方法一: 

 方法二​


一、连续型随机变量

1、定义:

        设 X 是随机变量, 若存在一个非负可积函数 f ( x ),

         

        其中F ( x )是它的分布函数,则称 f ( x )是X 的概率密度函数。

  • 连续型r.v取任一指定值的概率为0,概率为0 (1) 的事件未必不发生(发生)。因此,对于连续型随机变量, 关心它在某一点取值的问题没有什么意义; 我们所关心的是它在某一区间上取值的问题。

二、正态分布

1、定义:

        若X 的 d.f. 为,则称 X 服从参数为 \mu, \delta2  的正态分布,记作 X ~ N ( \mu , \delta 2 )

 2、正态分布的图形特点:

        正态分布的密度曲线是一条关于\mu对称的钟形曲线,特点是“两头小,中间大,左右对称”。\mu决定了图形的中心位置,\delta决定了图形中峰的陡峭程度。P(X≥\mu)=1-P(X≤\mu)=0.5

  

 

  •  正态分布是应用最广泛的一种连续型分布:各种测量的误差;  人体的生理特征;工厂产品的尺寸;  农作物的收获量;海洋波浪的高度;  金属线抗拉强度;热噪声电流强度;  学生的考试成绩。。。。。。

 3、标准正太分布:X~N (0,1)

  • 密度函数:

  •  分布函数:其值有专门的表供查

 重点:标准正态分布的重要性在于,任何一个 一般的正态分布都可以通过线性变换转化为 标准正态分布。根据定理,只要将标准正态分布的分布函数制成表,就可以解决一般正态分布的概率计算问题。

三、指数分布

  1、 密度函数:

        若 X  d.f. 为下,则称 X 服从 参数为 l 的指数分布,记作X~E(\lambda

   2、  分布函数:

 3、指数分布的”无记忆性“

 四、均匀分布 X~U(a,b)

1、密度函数:

2、分布函数 :

 3、函数图形

 五、随机变量函数的分布(重难点)

  • 设随机变量X 的分布已知,Y=g (X) (设g是连续函数),如何由X 的分布求出Y 的分布?
  •  方法1:从分布函数出发
  • 方法2:用公式直接求密度

1、方法一

2、方法二 

 3、例题

方法一: 

 方法二

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值