Spark MLlib Pipeline

Spark MLlib Pipeline

前面我们一起学习了如何在 Spark MLlib 框架下做特征工程与模型训练。不论是特征工程,还是模型训练,针对同一个机器学习问题,我们往往需要尝试不同的特征处理方法或是模型算法。结合之前的大量实例,细心的你想必早已发现,针对同一问题,不同的算法选型在开发的过程中,存在着大量的重复性代码。

以 GBDT 和随机森林为例,它们处理数据的过程是相似的,原始数据都是经过 StringIndexer、VectorAssembler 和 VectorIndexer 这三个环节转化为训练样本,只不过 GBDT 最后用 GBTRegressor 来做回归,而随机森林用 RandomForestClassifier 来做分类。

image-20240802185251822

不仅如此,在之前验证模型效果的时候我们也没有闭环,仅仅检查了训练集上的拟合效果,并没有在测试集上进行推理并验证。如果我们尝试去加载新的测试数据集,那么所有的特征处理过程,都需要在测试集上重演一遍。无疑,这同样会引入大量冗余的重复代码。

那么,有没有什么办法,能够避免上述的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值