- 博客(13)
- 资源 (6)
- 收藏
- 关注
原创 Linux服务器安装cuda,cudnn,显卡驱动和pytorch超详细流程
基本的环境首先了解自己服务器的操作系统内核版本等信息:查看自己操作系统的版本信息:cat /etc/issue或者是 cat /etc/lsb-release等命令 查看服务器显卡信息:lspci | grep -i nvidia查看全部显卡信息。 nvidia-smi如果已经安装了对应的显卡驱动的话可以采用这个命令。cat /proc/driver/nvidia/ve...
2019-08-08 15:31:03 50669 1
原创 变分自编码器VAE详解
emmmmm…先来一首BGM吧。VAE的讲解网络的逻辑输入和输出 这是我为了更加清晰的介绍流程图而设定的(不知专业的词哈) 首先,对于一批数据来说,生成模型的目标就是学习得到一个分布P(X)P(X)P(X),使得该分布和数据的真是分布Pgt(X)P_{gt}(X)Pgt(X)很接近,这样一来,我们就可以根据得到的P(X)P(X)P(X)来生成该数据集中到数据,也就是达到了生成数据...
2019-06-15 11:28:14 2592
原创 windows10下的工作站搭建: cuda10 + tensorflow-gpu1.12.0 + cudnn 7.4 +PyCharm2018
windows10下的工作站搭建: cuda10 + tensorflow-gpu1.12.0 + cudnn 7.4 +PyCharm2018 安装cuda:开发工具 PyCharm的破解激活这一章节就结束了。。。。。安装cuda: 首先你需要先确定自己的显卡的型号适合的cuda toolkit.一般的做法是:控制面板,在控制面板上搜索nv,就出来英伟达的控制面板了。在控制面板...
2019-01-17 21:58:54 3817 1
原创 Python 之多元线性回归分析
Python 之多元线性回归分析数据预处理使用pandas进行数据预处理本文使用的数据处理工具为pandas,其提供了对excel文件,csv文件的高效处理,操作简单。‘’’def read_excel(path, save=False): # 读取excel 文件 data = pd.read_excel(path, index_col=[]) # 读取csv 文件 data = pd.read_csv(path, index_col=[])
2021-04-28 11:45:35 4841 2
原创 面试之敌系列 3 多线程详解【超详细整理】
进程和线程官方定义:线程是CPU调度和分配的基本单位,一定要和进程是操作系统进行资源分配(包括cpu、内存、磁盘IO等)的最小单位区别清楚。注意,一个是cpu的,一个是系统的资源(这里的资源表示除了CPU 之外的一切东西,也叫上下文)CPU进程无法同时刻共享,但是出现一定要共享CPU的需求呢?此时线程的概念就出现了。线程被包含在进程当中,进程的不同线程间共享CPU和程序上下文。(共享进程分配到的资源)。单CPU进行进程调度的时候,需要读取上下文+执行程序+保存上下文,即进程切换。如果这个CPU是单核
2020-12-30 17:14:11 274
原创 面试之敌系列 2 JVM管理详解【超详细整合】
JAVA 内存管理和性能优化篇一,运行时数据区域JAVA 的内存管理中,将内存分为了运行时数据区域和直接内存区域。运行时数据区域是JAVA需要进行分配和垃圾回收管理的最主要区域。而直接内存是java1.4中才提出的一个NIO的缓冲区域,它会直接调用Native函数库直接进行堆外内存分配,然后通过一个存储在JAVA堆中的对象进行该内存区域的管理。这样,直接内存其实也是会间接的受到gc的影响的,但是细节不清楚,这样做的好处是避免了垃圾回收的时候频繁的复制和移动数据,提高了性能。同样的,直接内存也会出现OO
2020-12-30 17:11:15 332
原创 面试之敌系列 1 MySQL
MySQL简单介绍mySQL是一种常用的关系型数据库。免费开源。其默认的存储引擎为InnoDB,并且,和MYISAM相比,InnoDB是支持事务的(事务型存储引擎)。MYISAM和InnoDB在5.5版本之前,默认的存储引擎是 MyISAM,因为它提供的了很多的特性,主要有索引和全文压缩等技术。但是它不支持行锁以及事务。因此,在5.6版本之后,默认的存储引擎就变成了InnoDB。下面罗列一些比较是否支持行级锁:InooDB支持行级锁而MyISAM不支持。MyISAM只有表级锁。是否支持事务
2020-12-30 17:09:58 170
原创 逻辑回归>>>>>最大似然>>>>>最大后验概率
逻辑回归emmmm…先来首音乐Album Soon线性回归 在统计学中,线性回归(英语:linear regression)是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归(multivariate linear regre...
2019-06-13 21:32:23 2250
原创 如何区分生成模型和判别模型?
生成模型和判别模型简单的概念监督学习的目标是学习的得到一个模型,通过这个模型对给定的输出,得到一个特定的输出,从而预测该数据的类别。这个模型可以称为 classifier。这个模型对应的函数一般是 Y=f(X)Y=f(X)Y=f(X)或者是P(Y∣X)P(Y|X)P(Y∣X) (在数理统计中,随机变量是xxx,样例是XXX)。对于决策函数Y=f(X)Y=f(X)Y=f(X)类型,需要设置一...
2019-06-10 18:00:08 1817
原创 Windows10+Pytorch +CUDA10+cudnn7
Windows 下的Pytorch +CUDA10+cudnn7的搭建pytorch 下载网址;到官网上根据自己的电脑的配置,选择对应的参数之后,会给出对应的运行的命令;检查是否安装成:ipythonimport torchtorch.__version__ #显示torch版本信息torch.cuda.is_available() ...
2019-06-03 19:56:50 1267
原创 one_hot实现
查看tensorflow里面one_hot编码的实现,源码内容如下:def dense_to_one_hot(labels_dense, num_classes): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.sh
2018-08-03 14:24:18 746
原创 在MNIST数据集上训练一个卷积网络自编码器
首先你肯定知道了什么是自编码,一般我们常见的自编码是使用的多层感知机来实现的,也就是多层的全连接神经网络结构。本小记中我们使用CNN实现一个七层的卷积神经网络构成的自编码器。 自编码器使用很广泛,我觉得它的思想就是同一空间的数据操作的最优结果,数据经过压缩(数据向前传播到达中间的层所得到的结果),然后数据的解压缩过程(数据到达网络的输出),回到原来的空间。这个思想很关键,利用这个思想我...
2018-07-31 16:30:46 1405
原创 关于struct.unpack_from(fmt=,buffer=,offfset=)使用中常见的错误
1. 首先介绍该函数的使用场景: 该函数可以将缓冲区buffer中的内容在按照指定的格式fmt='somenformat',从偏移量为offset=numb的位置开始进行读取。返回的是一个对应的元组tuple,一般使用的场景是从一个二进制或者其他文件中读取的内容进行解析操作。 2. 例子介绍:import numpy as npimport os# 文件所在的路径image_p...
2018-07-31 16:05:31 20116 3
Omniglot数据库,mnist_data数据库,cifa10_data数据库以及最近很火的miniImageNet
2019-07-06
超级全面jar包
2018-08-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人