one_hot实现

本文介绍了one_hot编码的实现过程,包括理解labels_dense必须为numpy array,获取标签数量,建立下标,创建one_hot矩阵,并对指定位置赋值1。通过flat属性和ravel()方法处理数据,形成一维形式的one_hot编码。
摘要由CSDN通过智能技术生成
查看tensorflow里面one_hot编码的实现,源码内容如下:


def dense_to_one_hot(labels_dense, num_classes):
  """Convert class labels from scalars to one-hot vectors."""
  num_labels = labels_dense.shape[0]
  index_offset = numpy.arange(num_labels) * num_classes
  labels_one_hot = numpy.zeros((num_labels, num_classes))
  labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
  return labels_one_hot

对函数进行理解:
1. 首先,labels_dense 必须是一个numpy里面的array类型的数据,因为要使用它的shape属性。
2. 一开始获取labels标签的数量,用于创建遍历时候的下标
3. 建立下标:idnex_offset该下标表表示的是一维时候每个labels的对应下标࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值