计算图优化有哪些=>举例说明

计算图优化是深度学习编译器(如TVM)用来提高模型执行效率的重要技术。它通过对计算图(即神经网络的表示形式)进行一系列的变换和优化,使得模型在目标硬件上能够以更快的速度和更少的资源进行推理。以下是计算图优化的详细解说及与其他相似策略的对比。

1. 计算图优化的关键策略

1.1 常量折叠 (Constant Folding)

常量折叠是一种基础的编译优化技术,它在编译时提前计算出所有可以静态求值的表达式,而不是等到运行时再计算。这减少了运行时的计算量。

  • 应用场景:适用于计算图中包含常量的算子。例如,add(5, 3) 可以直接在编译时计算为 8,从而在运行时避免这部分计算。

  • 在TVM中的实现

    from tvm import relay
    from tvm.relay import transform
    
    # 创建包含常量的计算图
    a = relay.const(5)
    b = relay.const(3)
    c = relay.add(a, b)
    
    # 应用常量折叠优化
    mod = relay.Function([], c)
    with relay.build_config(opt_level=3):
        mod = transform.FoldConstant()(mod)
    
1.2 算子融合 (Operator Fusion)

算子融合通过将多个算子合并为一个算子,减少了中间数据的存储和内存访问,降低了计算开销。这种优化在卷积层和激活函数等序列操作中尤为常见。

  • 应用场景:适用于多个相连的算子,特别是在深度学习模型的前向传播过程中。例如,将卷积和ReLU操作融

在SLAM中,优化问题的目标是最小化误差或代价函数。代价函数的构建通常基于误差模型和约束条件。下面以一个简单的例子来说明如何建立代价函数。 假设有两个机器人,分别位于点 $A$ 和点 $B$,它们的运动轨迹可以通过IMU和视觉传感器进行估计。我们希望通过SLAM算法来估计机器人的运动轨迹以及地图。我们可以使用以下的代价函数: $$ \min\sum_{i=1}^{N}\left\|f_i(x)-z_i\right\|^2 $$ 其中,$f_i(x)$ 表示机器人在时间步 $i$ 的运动轨迹和地图,$z_i$ 表示通过传感器测量得到的机器人在时间步 $i$ 的位置和姿态信息。代价函数的目标是最小化测量和估计之间的差距。 为了建立代价函数,我们需要确定误差模型和约束条件。假设机器人的运动是基于刚体模型,运动轨迹可以通过速度和角速度进行估计。我们可以使用欧拉积分法来计算机器人的位姿变化。则运动模型可以表示为: $$ x_i = \exp(\delta t_i \cdot \mathcal{S}(\omega_i))\cdot x_{i-1} + \delta t_i \cdot v_i $$ 其中,$\mathcal{S}(\omega_i)$ 表示一个反对称矩阵,$v_i$ 表示机器人在时间步 $i$ 的线速度。假设我们使用相机测量机器人的位姿信息,我们可以使用以下的误差模型: $$ e_i = \pi(f_i(x)) - z_i $$ 其中,$\pi$ 表示投影函数。对于单目相机,投影函数可以表示为: $$ \pi(x) = \begin{bmatrix}u\\v\end{bmatrix} = \begin{bmatrix}f_x\frac{x}{z}+c_x\\f_y\frac{y}{z}+c_y\end{bmatrix} $$ 这里,$f_x$ 和 $f_y$ 表示相机的焦距,$c_x$ 和 $c_y$ 表示相机的光心坐标。对于双目相机和深度相机,投影函数也可以类似地定义。 最后,我们需要将误差模型和约束条件转换为代价函数。我们可以使用高斯分布来建模误差,代价函数可以表示为: $$ \min\sum_{i=1}^{N}\frac{1}{2}(f_i(x)-z_i)^T\Lambda_i(f_i(x)-z_i) $$ 其中,$\Lambda_i$ 表示协方差矩阵。如果我们假设误差服从零均值高斯分布,$\Lambda_i$ 就可以表示为对角矩阵。 这样,我们就得到了一个基于误差模型和约束条件的代价函数。我们可以使用优化算法来最小化代价函数,从而得到机器人的运动轨迹和地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值