这里写目录标题
题目:
一棵树的叶子有多重?
怎么能估计树的叶子(或者树的任何其它部分)的实际重量?
怎样对叶子进行分类?建立一个数学模型来对叶子进行描述和分类。模型要考虑和回答下面的问题:
为什么叶子具有各种形状? 叶子之间是要将相互重叠的部分最小化,以便可以最大限度的接触到阳光吗?
树叶的分布以及树干和枝杈的体积影响叶子的形状吗? 就轮廓来讲,叶形 (一般特征) 是和树的轮廓以及分枝结构有关吗?
你将如何估计一棵树的叶子质量?叶子的质量和树的尺寸特征(包括和外形轮廓有关的高度、质量、体积)有联系吗?
除了你的一页摘要以外,给科学杂志的编辑写一封信,阐述你的主要发现
目录
1 引言
2 问题的分解
3 假设
4 术语
5 6 7 8 各个模型,每个模型中最后一个小部分有总结
9 本文的优势和劣势
摘要部分
总体概述,加上对于所建立的各个模型分别说明
引言部分
用提出现在的问题和解答的方式来引出题目中的问题和作者所作的工作,语言活泼幽默,让人可以更有兴趣读下去
Breaking Down the Problem / 问题的分解
归纳了本题目的问题,分别对每个问题进行了简要分析
Assumptions / 假设
直接写出各个问题的假设
Nomenclatures / 术语
第一列:Symbol
第二列:Meaning
model 1
为了将任意一片树叶按形状分到已知的某类当中 我们 希望设置一组参数, 继而建立数据集用以对比. 在仔细完整地分析了树叶后, 我们归纳出 7 个最重要的参数, 如下:
应用层次分析法
做出判断矩阵,
由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验
得到结论:上述方法极好地接受了一致性检验, 因此得到的权重是合理的.
又进行了Model Testing,
现在我们将用枫叶作为树叶分类模型的检验样本. 在此之前, 我们将这片枫叶与数据库中的 6 个标准叶形做了对比, 发现它与类型 4 最为相似. 那么现在我们将用我们基于量化分析的分类模型来验证这个假设
比较了给定枫叶参数与 6 个标准类别参数后, 得出 6个偏差指数中最小的即为被分类的模型
Model Two
第一部分,Introduction
树叶由多种因素组成,但作者研究重点限定为: 树叶分布如何影响叶形
第二部分
第三部分 分析了两个极端情况,角度成90,0度的情况。
第四部分 分析 最典型的温带,斜着照向树叶情况
为了简化模型, 我们选择菱形代表树叶形状, 设长轴长,短轴长
于过程中固定树叶面积、只调整叶形, 我们用 最小重叠面积 (记作 A overlapping ) 进一步定义最小重叠率 E:
我们从这个函数中发现, L major 越趋近 L? tanα 时, 重叠面积将越小.
至此, 我们已经考虑了 h = h 0 和 h < h 0 两种情况. 从我们之前的讨论可知, 最佳的树叶分布出现在 h = h 0 时, 即
检验树叶分布与叶形之间的这种数量关系是否正确. 我们收集了许多树种的叶长 和节间距
数据,带入
验证在树叶分布和叶形之 间确实存在着联系
Model Three:
鉴于叶脉构造决定叶形、枝干结构决定树形, 而与此同 时, 叶脉和枝条也很相似 (参看图 3.1), 我们做出一个大胆的猜想: 叶形可能是树形的二维袖珍模型 (mimic). 也就是, 在叶形与树形间是否存在着某种联系.
用对比的图片对树形和叶形,清晰直观
图表相对应,nice
Model Four
依赖于一个 (对于成年树木) 更可 靠的因素——光合作用来计算树叶总质量.
我们的估算方法基于 3 个变量: 树龄、生长率 (取决于树种) 和一般类型 (阔叶型或针叶型两种). 换句话说, 只要给定树龄和树的类型, 我们就能够估算出树叶的总质量. 在这个模型中, CO2 将作为计算的一个媒介.
最后用关系图来更清晰的看出树叶质量与大小特征之间是否存在着一定联系.
Strengths and Weaknesses
分别对每个模型进行了分析优劣