数学建模
文章平均质量分 55
建模比赛
kingsure001
从现在开始
展开
-
美赛数据网站
常用网址: 1、香港中文大学的数学中英对照:http://www.cmi.hku.hk/Ref/Glossary/Mat/i.htm 2、美国MCM的主页:http://www.comap.com 3、美国普查局: http://2010.census.gov/2010census/language/chinese-simplified.php 4、美国交通统计局:http://www.bts.gov 5、美国劳工统计局:http://stats.bls.gov 6、美国国家农业统计原创 2021-02-01 19:08:42 · 3432 阅读 · 0 评论 -
模糊综合评价模型
原创 2021-01-30 21:12:27 · 366 阅读 · 0 评论 -
MCM2012 Problem A: The Leaves of a Tree
题目:一棵树的叶子有多重?怎么能估计树的叶子(或者树的任何其它部分)的实际重量?怎样对叶子进行分类?建立一个数学模型来对叶子进行描述和分类。模型要考虑和回答下面的问题:为什么叶子具有各种形状? 叶子之间是要将相互重叠的部分最小化,以便可以最大限度的接触到阳光吗?树叶的分布以及树干和枝杈的体积影响叶子的形状吗? 就轮廓来讲,叶形 (一般特征) 是和树的轮廓以及分枝结构有关吗?你将如何估计一棵树的叶子质量?叶子的质量和树的尺寸特征(包括和外形轮廓有关的高度、质量、体积)有联系吗?除了你的一页摘原创 2021-01-30 11:15:49 · 891 阅读 · 1 评论 -
【更新10】蒙特卡罗模拟
蒙特卡罗 方法 的 应用实例1 三门问题你参加⼀档电视节⽬,节⽬组提供了ABC三扇⻔,主持⼈告诉你,其中⼀扇⻔后边有辆汽⻋,其它两扇⻔后是空的。假如你选择了B⻔,这时,主持⼈打开了C⻔,让你看到C⻔后什么都没有,然后问你要不要改选A⻔?2模拟排队问题假设某银⾏⼯作时间只有⼀个服务窗⼝,⼯作⼈员只能逐个的接待顾客。当来的顾客较多时,⼀部分顾客就需要排队等待。假设:1) 顾客到来的间隔时间服从参数为0.1的指数分布 2) 每个顾客的服务时间服从均值为10,⽅差为4的正态分布(单位为分钟,若服务时间⼩..原创 2021-01-28 22:44:45 · 243 阅读 · 0 评论 -
【更新7】ARCH和GARCH模型
ARCH模型(Autoregressive conditional heteroskedasticity model)全称“自回归条件异方差模型”,在现代高频金融时间序列中,数据经常出现波动性聚集的特点,但从长期来看数据是平稳的,即长期方差无条件方差)是定值,但从短期来看方差是不稳定的,我们称这种异方差为条件异方差。传统的时间序列模型如ARMA模型识别不出来这一特征。为什么引入ARCH模型?数据呈现波动聚集性(volatility clustering)长期来看时间序列平稳,短期来看不平稳,存在异方差原创 2021-01-27 23:05:52 · 16316 阅读 · 0 评论 -
【更新8】正态分布均值的假设检验
假设检验的步骤可以归纳如下:(1)写出原假设和备择假设;(2)在原假设成立的条件下,构造一个统计量,该统计量服从某一分布;(3)用已知的样本数据带入统计量的公式,得到一个检验值;(4)给定置信水平来得到一个接受域的区间,看检验值是否落在接受域中,或者用检验值和区间的临界值进行比较,来判断是否接受原假设(或者计算该检验值对应于其分布的p值,并将p值和指定的显著性水平比较从而来确定是否接受原假设)。例子:逐对比较法有时为了比较两种产品、两种仪器 、两种方法等的差异,我们常在相同的条件下做对原创 2021-01-27 23:05:17 · 2949 阅读 · 0 评论 -
【更新6】Floyd算法
Floyd‐Warshall算法,中文亦称弗洛伊德算法,是解决任意两点间的最短路径的一种算法,可以正确处理无向图或有向图(可以有负权重,但不可存在负权回路)的最短路径问题。Floyd算法与迪杰斯特拉算法或贝尔曼福特算法相比,能够一次性的求出任意两点之间的最短路径,后两种算法运行一次只能计算出给定的起点和终点之间的最短路径。当然,Floyd算法计算的时间也要高于后两种算法,其算法核心的步骤由三层循环构成可通过一个路径矩阵path来记录最短路径经过的点...原创 2021-01-27 10:52:38 · 156 阅读 · 0 评论 -
【更新4】岭回归和lasso回归
在第七讲时,我们介绍了多元线性回归模型,估计回归系数使用的是OLS,并在最后探讨了异方差和多重共线性对于模型的影响。事实上,回归中关于自变量的选择大有门道,变量过多时可能会导致多重共线性问题造成回归系数的不显著,甚至造成OLS估计的失效。本节介绍到的岭回归和lasso回归在OLS回归模型的损失函数上加上了不同的惩罚项,该惩罚项由回归系数的函数构成,一方面,加入的惩罚项能够识别出模型中不重要的变量,对模型起到简化作用,可以看作逐步回归法的升级版;另一方面,加入的惩罚项能够让模型变得可估计,即使之前的数据原创 2021-01-26 22:20:16 · 957 阅读 · 0 评论 -
【更新1】用Excel绘制统计图
这里写目录标题饼图柱状(形)图条形图饼图如果类别太多不适合, 类别不超过七个。因为七个以上的扇区会使图表难以阅读。类别太少也不适合(两类),可以画的像画一样好看的(美赛)适合完整数据(一年四季),一般不完整时可以加其他任何数据值都不为零或小于零。注意: 不用在图中加入标题,我们一般在论文的正文中加入(表上图下)。另外,画出来的图一定要有分析,要告诉读者你画图的目的是什么。1 改变图例位置2 添加数据标签柱状(形)图点击柱形条,设置宽度(粗细)切换行和列,右击,点击“选原创 2021-01-26 19:02:04 · 512 阅读 · 0 评论 -
【更新2】因子分析
因子分析由斯皮尔曼在1904年首次提出,其在某种程度上可以被看成是主成分分析的推广和扩展。因子分析法通过研究变量间的相关系数矩阵,把这些变量间错综复杂的关系归结成少数几个综合因子,由于归结出的因子个数少于原始变量的个数,但是它们又包含原始变量的信息,所以,这一分析过程也称为降维。由于因子往往比主成分更易得到解释,故因子分析比主成分分析更容易成功,从而有更广泛的应用。因子分析的实例例1:在1984年洛杉矶奥运会田径统计手册中,有55个国家和地区的如下八项男子径赛运动记录:X1:原创 2021-01-25 22:16:10 · 1149 阅读 · 0 评论 -
【更新5】灰色系统分析
美赛不建议用,国内的赛可以原创 2021-01-25 18:50:33 · 252 阅读 · 1 评论 -
美赛写作
这里写目录标题总体框架:Summary Sheet 摘要页标题和目录1 Introduction(引言)2 Assumptions and Justifications(模型假设,并且要论证假设的合理性)3 Notations(符号说明)4&5&6. The name of model 1,2,3Data Deascription(不常见)7. Sensitivity Analysis(灵敏度分析或敏感性分析)8. Model Evaluation and Further Discussio原创 2021-01-25 15:24:53 · 12358 阅读 · 2 评论 -
分类模型
线性概率模型数据预处理:生成虚拟变量对于因变量为分类变量的情况,我们可以使用逻辑回归进行处理。把y看成事件发生的概率,y>0.5表示发生;y<0.5表示不发生Spss求解逻辑回归预测成功率假如自变量有分类变量怎么办?直接点击分类,然后定义分类协变量,Spss会自动帮我们生成预测结果较差怎么办?加入了平方项后,可能会过拟合如何确定合适的模型?把数据分为训练组和测试组,用训练组的数据来估计出模型,再用测试组的数据来进行测试。(训练组和测试组的比例一般设置为8.原创 2021-01-21 21:48:12 · 984 阅读 · 0 评论 -
图论最短路径问题
画图软件:https://csacademy.com/app/graph_editor/1 迪杰斯特拉算法每部都更新一个最短的路径,更新结点的最短路径迪杰斯特拉算法的一个缺点2 Bellman‐Ford(贝尔曼‐福特)算法1是起点;2是终点刚刚改变访问状态的节点为0号节点(A)我们要更新与0号节点相邻的节点信息(B),注意,这里的B节点是未访问的哦更新的规则如下:如果(A与B的距离+ A列表中的距离)小于(B列表中的距离),那么我们就将B列表中的距离更新为较小的距离,并将B的父亲原创 2021-01-20 22:08:36 · 438 阅读 · 1 评论 -
典型相关分析
典型相关分析(Canonical Correlation analysis)研究两组变量(每组变量中都可能有多个指标)之间相关关系的一种多元统计方法。它能够揭示出两组变量之间的内在联系例子:我们要探究观众和业内人士对于一些电视节目的观点有什么样的关系呢?观众评分来自低学历(led)、高学历(hed)和网络(net)调查三种,它们形成第一组变量;而业内人士分评分来自包括演员和导演在内的艺术(arti)、发行(com)与业内各部门主管(man)三种,形成第二组变量直接对这些变量的相关进行两两分析,很难得原创 2021-01-17 21:53:30 · 3932 阅读 · 0 评论 -
word排版
高手常用的两个功能1 显示/隐藏编辑标记打开这个开关后,可以看到一些隐藏的符号(例如:空格、换行符、分页符等)2 打印预览功能开启打印预览功能后,点击该按钮可以看到你论文导出为PDF格式之后的样子。注意:如果你发现你的word没有功能区,你可以在右上方设置出来。常见的快捷键1 讨厌的insert键要求:请在C和E直接插入一个 DABCDEFG插入键(Insert key,缩写INS)是电脑键盘的一个键,主要用于在文字处理器切换文本输入的模式。一种为覆盖模式,光标位置新输入字会替代原来原创 2021-01-15 22:43:08 · 546 阅读 · 5 评论 -
第五讲 相关系数
相关系数总体 ——所要考察对象的全部个体叫做总体.我们总是希望得到总体数据的一些特征(例如均值方差等)样本 ——从总体中所抽取的一部分个体叫做总体的一个样本.计算这些抽取的样本的统计量来估计总体的统计量:例如使用样本均值、样本标准差来估计总体的均值(平均水平)和总体的标准差(偏离程度)。例子:我国10年进行一次的人口普查得到的数据就是总体数据。大家自己在QQ群发问卷叫同学帮忙填写得到的数据就是样本数据这里的相关系数只是用来衡量两个变量线性相关程度的指标;也就是说,你必须先确认这两个原创 2021-01-15 22:06:37 · 2963 阅读 · 0 评论 -
第四讲 拟合算法
插值算法原创 2021-01-14 23:00:24 · 650 阅读 · 0 评论 -
插值算法
插值算法:数模比赛中,常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法,“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。像这样缺少数据对应的要用到插值算法:由于拉格朗日插值会出现龙格现象(Runge phenomenon) 如下:引入了牛顿插值,但牛顿插值也会出现龙格现象为了克服龙格现象,引入有导数值约束的埃尔米特插值分段三次埃尔米特插值三次样条插值三次样条生成的曲线更加光原创 2021-01-13 17:14:40 · 331 阅读 · 0 评论 -
TOPSIS法
引入:层次分析法的一些局限性:(1)评价的决策层不能太多,太多的话n会很大,判断矩阵和一致矩阵差异可能会很大。2)如果决策层中指标的数据是已知的,就无法使用层次分析法了步骤:一:指标个数为多个时,将所有的指标转化为极大型称为指标正向化(最常用)二:三:...原创 2021-01-13 09:28:57 · 646 阅读 · 0 评论 -
层次分析法
层次分析法1 建立层次结构模型2 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,构造判断矩阵3 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,(检验通过才能够计算权重)a 算数平均法b 几何平均法c 特征值求权重4 根据权重矩阵计算得分,并进行排序代码1 建立层次结构模型目标 方案 准则 层2 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,构造判断矩阵两两比较:判断矩阵:在同一因素下,填写不同方案的判断矩阵。有可能出现矛盾之处这时需要一原创 2020-09-13 18:04:27 · 6918 阅读 · 1 评论 -
matlab运算符
算数运算符算数乘 *点乘 .*算数乘方 ^点乘方 .^算数左除 \ a\b=b/a算数右除 \ a/b和传统除法相同矩阵转置 ’ (当矩阵是复数时,求矩阵共轭转置)矩阵转置 .’ (当矩阵是复数时,不求矩阵共轭)关系运算符不等于 ~=其他一样逻辑运算符逻辑与 and ,&逻辑或 |,or逻辑非 ~逻辑异或 xor所有元素均非0为真 all有非0元素为真 any...原创 2020-09-10 22:11:48 · 182 阅读 · 0 评论