【更新7】ARCH和GARCH模型

建模比赛 专栏收录该内容
22 篇文章 1 订阅

ARCH模型(Autoregressive conditional heteroskedasticity model)全称“自回归条件异方差模型”,在现代高频金融时间序列中,数据经常出现波动性聚集的特点,但从长期来看数据是平稳的,即长期方差无条件方差)是定值,但从短期来看方差是不稳定的,我们称这种异方差为条件异方差传统的时间序列模型如ARMA模型识别不出来这一特征

为什么引入ARCH模型?
数据呈现波动聚集性(volatility clustering)长期来看时间序列平稳,短期来看不平稳,存在异方差
在这里插入图片描述

我们所说的ARCH模型均是下面的乘法条件异方差模型。另外,大家可以看出,实际上ARCH模型是在ARMA模型的基础上提出来的,两者的区别在于扰动项的设置不同,在ARMA模型中扰动项是最简单的白噪声序列。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
适用股票

例子在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

// LM检验:是否存在ARCH误差
reg ressq l.ressq l2.ressq l3.ressq l4.ressq l5.ressq // 将残差平方项对其滞后项回归
gen LM_STAT=e(N)*e(r2) // 计算LM统计量
display LM_STAT // 输出LM统计量
display chiprob(e(df_m),LM_STAT) // 计算p值

通过比较AIC和BIC,最终我们选择使用带有GARCH(1,1)且v t 服从t分布的扰动项的ARMA(3,3)模型进行估计。

// 利用AIC BIC选择合适的模型进行估计
// 注意:扰动项的分布在金融数据中常服从t分布
// (1)正态分布下GARCH(1,1)估计
arch r,arima(3 0 3) arch(1) garch(1)
estat ic
// (2)t分布下GARCH(1,1)估计
arch r,arima(3 0 3) arch(1) garch(1) distribution(t 3)
estat ic
// (3)正态分布下GARCH(2,2)估计
arch r,arima(3 0 3) arch(2) garch(2)
estat ic
// (4)t分布下GARCH(2,2)估计
arch r,arima(3 0 3) arch(2) garch(2) distribution(t 3)

在这里插入图片描述

  • 5
    点赞
  • 0
    评论
  • 28
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值