Windows环境下本地数据源Mnist的Tensorflow实例(Python3.6)

本文档详细介绍了在Windows10系统中,使用Python3.6和Tensorflow进行Mnist数据集的学习,重点在于如何使用本地已下载的Mnist数据,避免在线下载。步骤包括数据保存、新建数据装载程序、修改代码以读取本地数据源,并提供了测试代码的修改方法。
摘要由CSDN通过智能技术生成

闲篇不扯,关于Mnist,Tensorflow的简介请自己看博客。

操作系统:Windows10

Python环境:3.6,并已经安装了numpy,Tensorflow等必备库

问题:网上很多文章了,现在修改的点就是使用本地已经下载的Mnist学习数据,而不再去下载。

第一步:下载Mnist数据,Mnist数据下载地址:http://yann.lecun.com/exdb/mnist/



下方红色的四个文件就是下载的文件。下载后保存,我的保存地址是D:\python\Python36\testdata

第二步:新建数据装载程序,也就是Input_data.py文件,我是把全部的input_data文件代码复制过来的。我复制的input_data文件地址是:http://blog.csdn.net/FANGPINLEI/article/details/51790284


第三步:修改复制代码改为本地数据源读取

1.一些库文件导入的差别:



改为

import urllib
#from six.moves import xrange  # pylint: disable=redefined-builtin
2.增加本地数据源路径的变量localpath
 


3.因为我们不使用xrange,所以将Input_data.py文件中的next_batch函数的范围判断改为range方法(python3不再使用xrange)





4.修改Input_data.py的 read_data_sets函数,不再下载文件而是使用本地数据源

1)文件名前面+\\符号






2.不再使用maybe_download函数去获取地址,直接使用localpath+filename获取数据文件





第四步:编写测试代码,新建一个py文件,我的文件是test_minst.py,还是在http://blog.csdn.net/FANGPINLEI/article/details/51790284,复制代码

只需要修改一处,将init初始化tensorflow方法改为

init = tf.global_variables_initializer()

第五步:debug一下,搞定




代码:

input_data.py

#coding=utf-8
"""Functions for downloading and reading MNIST data."""
#2017-10-08将文件下载改写为本地读取
from __future__ import absolute_import
from __future__ import division
from 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值