machine-learning
kiooooo
这个作者很懒,什么都没留下…
展开
-
Andrew Ng机器学习笔记week1 线性回归
Andrew Ng机器学习笔记week1第一周主要是对机器学习进行简单的介绍和线性回归的知识点:一、Introductionmachine learning的举例 machine learning定义和例题 machine learning分类 - Supervised learning right answer given,有标记的 1.regression:c原创 2017-10-18 09:32:23 · 357 阅读 · 0 评论 -
Andrew Ng机器学习笔记ex8 异常检测和推荐系统
estimateGaussian.mfunction [mu sigma2] = estimateGaussian(X) %ESTIMATEGAUSSIAN This function estimates the parameters of a %Gaussian distribution using the data in X % [mu sigma2] = estimateGaussian原创 2017-12-11 19:13:40 · 380 阅读 · 0 评论 -
Andrew Ng机器学习笔记week9 异常检测、推荐系统
一、异常检测1.问题举例: 2.高斯分布 3.算法 密度估计 算法过程、举例: 算法评估: 4.异常检测 VS 监督学习 5.选择使用的特征 6.多变量高斯分布 使用多变量高斯分布的异常检测 二、推荐系统问题: 1.基于内容的推荐 优化目标: 优化算法: 2.Collaborative filtering 优化算法:原创 2017-12-11 19:09:19 · 312 阅读 · 0 评论 -
Andrew Ng机器学习笔记ex7 K-means聚类和PCA
findClosestCentroids.mfunction idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS computes the centroid memberships for every example % idx = FINDCLOSESTCENTROIDS (X, centroids) returns t原创 2017-12-11 18:14:01 · 554 阅读 · 0 评论 -
Andrew Ng机器学习笔记week8 无监督学习(聚类、PCA)
一、k均值聚类算法1.K-‐means算法算法实现过程: 随机初始化K个聚类中心 几个类不是分离的,算法怎么做?举例,衣服大小怎么分: 2.K均值聚类算法的优化目标3.随机初始化局部最优的问题: 4.选择聚类的个数 选择一个临界点: 比如衣服尺寸的分类: 二、维度下降目的: ①数据压缩 ②数据的可视化(对数据的分析更加直观) 主成分分析(Princi原创 2017-12-11 17:52:10 · 231 阅读 · 0 评论 -
Andrew Ng机器学习笔记ex6 支持向量机SVM
gaussianKernel.mfunction sim = gaussianKernel(x1, x2, sigma) %RBFKERNEL returns a radial basis function kernel between x1 and x2 % sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 an原创 2017-12-11 17:39:39 · 1085 阅读 · 0 评论 -
Andrew Ng机器学习笔记ex5 正则化的逻辑回归、偏差和方差
linearRegCostFunction.mfunction [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %regression with multiple variables % [原创 2017-12-11 17:32:41 · 370 阅读 · 0 评论 -
Andrew Ng机器学习笔记week7 支持向量机SVM
1.Alternative view of logistic regression 逻辑回归: SVM: 2.Large Margin Intuition 决策边缘: 可线性分离的情况: 存在异常值的情况: 3.kernel –核非线性决策边缘: 核: 举例: 选择标志点: SVM with Kernels: SVM参数: 4.使用SVM原创 2017-12-11 17:26:01 · 373 阅读 · 0 评论 -
Andrew Ng机器学习笔记ex4 神经网络学习
nnCostFunction.mfunction [J grad] = nnCostFunction(nn_params, ... input_layer_size, ... hidden_layer_size, ...原创 2017-11-30 17:31:09 · 1355 阅读 · 0 评论 -
Andrew Ng机器学习笔记week6 机器学习的应用与设计
机器学习应用中的建议1、如何debug一个学习算法2、如何评估一个假设h(x) 3、模型的选择、训练集、检验集、测试集 将数据集合分为三部分,训练集占60%,检验集(Class Validation)占20%,最后测试集占20%4、bias VS variance 5、正则化和偏差(bias)、方差(variance) 6、神经网络的过拟合7、学习曲线 机器学习系统设计垃圾分类原创 2017-11-30 16:55:09 · 322 阅读 · 0 评论 -
Andrew Ng机器学习笔记ex3 神经网络
1、向量化正则化的逻辑回归 lrCostFunction.mfunction [J, grad] = lrCostFunction(theta, X, y, lambda) %LRCOSTFUNCTION Compute cost and gradient for logistic regression with %逻辑回归实现手写数字识别:lrCostFunction.m和oneVsAll.m和原创 2017-11-30 16:37:59 · 394 阅读 · 0 评论 -
Andrew Ng机器学习笔记week4、5 神经网络
神经网络的表达一、Non-linear hypotheses n很大很大,很多很多个特征。二、神经元模型 这里又用到了之前提到过的sigmoid函数,作为activation function三、Forward propagation: Vectorized implementation前向传播:向量化的实现 一个简单的神经网络的例子 四、多分类 这是一个又多个输出单元的神经网络,得到原创 2017-11-30 16:20:11 · 249 阅读 · 0 评论 -
Andrew Ng机器学习笔记ex2 逻辑回归
sigmoid函数 sigmoid.mfunction g = sigmoid(z) %SIGMOID Compute sigmoid function % g = SIGMOID(z) computes the sigmoid of z. % You need to return the following variables correctly g = zeros(size(z)); %原创 2017-11-30 15:18:02 · 502 阅读 · 0 评论 -
Andrew Ng机器学习笔记week3 逻辑回归
Logistic regression一、逻辑回归与分类 ①分类:y=0或1; h(x)≥阈值时,预测y=1; 反之,h(x)<阈值时,预测y=0. h(x)可以大于1,也可以小于0. ②逻辑回归:0≤h(x)≤1Hypothesis Representation 这里引入一个sigmoid函数来表示h(x)二、Decision boundary(决策边界) 三、Cost functi原创 2017-11-30 11:34:53 · 277 阅读 · 0 评论 -
Andrew Ng机器学习笔记ex1 线性回归
代价函数计算 computeCost.mfunction J = computeCost(X, y, theta) %COMPUTECOST Compute cost for linear regression % J = COMPUTECOST(X, y, theta) computes the cost of using theta as the % parameter for lin原创 2017-11-30 10:30:17 · 652 阅读 · 0 评论 -
Andrew Ng机器学习笔记week2 多变量线性回归
第二周主要是多特征的线性回归知识点:一、multiple features(variables)-多变量 预测值: 二、Gradient descent for multiple variables 1、Feature Scaling 需要把各个特征取值转化到统一范围内,比如一个特征取值范围0~100000,另一个特征取值范围0~10,那就没有可比性了。 2、L原创 2017-11-30 10:13:45 · 255 阅读 · 0 评论 -
Andrew Ng机器学习笔记week10 大规模机器学习
1.大型的数据集合 2.随机梯度下降(Stochastic gradient descent) 随机梯度下降算法 3.小批量梯度下降(mini-Batch gradient descent) 三种梯度下降方法对比: 4.随机梯度下降收敛 5.Online learning 6.Map-reduce and data parallelism(减少映射、数据并行)原创 2017-12-11 19:25:28 · 239 阅读 · 0 评论