Logistic regression
一、逻辑回归与分类
①分类:y=0或1;
h(x)≥阈值时,预测y=1;
反之,h(x)<阈值时,预测y=0.
h(x)可以大于1,也可以小于0.
②逻辑回归:0≤h(x)≤1
Hypothesis Representation
这里引入一个sigmoid函数来表示h(x)
二、Decision boundary(决策边界)
三、Cost function & gradient descent
四、Advanced op&mization 进一步优化
除了梯度下降之外,还包括共轭梯度法、BFGS和L-BFGS优化算法。
五、Multi-‐class classifica&on: One-‐vs-‐all 多分类
比如:
天气:
Sunny,
Cloudy,
Rain,
Snow
邮件标签::Work,
Friends,
Family,
Hobby
![one-vs-all解释](http://img.bl
og.csdn.net/20171130111348283?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQva2lvb29vbw==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
Regularization
overfitting–过拟合
线性回归与逻辑回归中的过拟合:
克服过拟合的方法:
①减少特征数量;②正则化
1、正则化的代价函数
其中λ为正则系数,取值过大会造成:
2、正则化的线性回归
3、正则化的逻辑回归