Andrew Ng机器学习笔记week3 逻辑回归

Logistic regression

一、逻辑回归与分类

分类的例子
①分类:y=0或1;
h(x)≥阈值时,预测y=1;
反之,h(x)<阈值时,预测y=0.
h(x)可以大于1,也可以小于0.
②逻辑回归:0≤h(x)≤1

Hypothesis Representation

逻辑回归模型
这里引入一个sigmoid函数来表示h(x)

二、Decision boundary(决策边界)

线性决策边界
非线性的决策边界

三、Cost function & gradient descent

代价函数表示
y=0
代价函数
梯度下降

四、Advanced op&mization 进一步优化

优化算法
除了梯度下降之外,还包括共轭梯度法、BFGS和L-BFGS优化算法。

五、Multi-­‐class classifica&on: One-­‐vs-­‐all 多分类
多分类与二分类
比如:
天气:
Sunny,
Cloudy,
Rain,
Snow
邮件标签::Work,
Friends,
Family,
Hobby
![one-vs-all解释](http://img.bl
og.csdn.net/20171130111348283?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQva2lvb29vbw==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)

Regularization

overfitting–过拟合

线性回归与逻辑回归中的过拟合:
这里写图片描述

克服过拟合的方法:
这里写图片描述
①减少特征数量;②正则化

1、正则化的代价函数

这里写图片描述
其中λ为正则系数,取值过大会造成:
这里写图片描述

2、正则化的线性回归

代价函数
梯度下降
标准方程
这里写图片描述
3、正则化的逻辑回归
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值