sigmoid函数
sigmoid.m
function g = sigmoid(z)
%SIGMOID Compute sigmoid function
% g = SIGMOID(z) computes the sigmoid of z.
% You need to return the following variables correctly
g = zeros(size(z));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
% vector or scalar).
g=1./(1+exp(-z));
% =============================================================
end
代价函数和梯度
costFunction.m
function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%
h=sigmoid(X*theta);
J=(-1/m)*sum(y.*log(h)+(1-y).*log(1-h));
n = length(theta);
for j = 1 : n,
grad(j)=sum((h-y).*X(:,j))/ m;%梯度计算
end
% S=sigmoid(X*theta);
% J=((-y'*log(S))-((1-y')*log(1-S)))/m;
% grad=(S-y)'*X/m;
end
逻辑回归
predict.m
function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic
%regression parameters theta
% p = PREDICT(theta, X) computes the predictions for X using a
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
m = size(X, 1); % Number of training examples
% You need to return the following variables correctly
p = zeros(m, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters.
% You should set p to a vector of 0's and 1's
%
p=round(sigmoid( 0);
%
end
正则化
cosFuncition
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
h=sigmoid(X*theta);
J=(-1/m)*sum(y.*log(h)+(1-y).*log(1-h))+lambda/(2*m)*(sum(theta.^2)-theta(1)^2);
grad(1) = (1/m) * sum((h - y) .* X(:, 1));
n = length(theta);
for j = 2 : n,
grad(j) = (1/m) * sum((h - y) .* X(:, j)) + (lambda / m) * theta(j);
end
%
% T=theta;
% T(1)=0;
% S=sigmoid(X*theta);
% J=((-y'*log(S))-((1-y')*log(1-S)))/m+lambda/(2*m)*sum(T.^2);
% grad=(S-y)'*X/m+lambda/m*T';
% =============================================================
end