2016夏季练习——水题(AI)

来源:CF460B

反过来枚举位数和,代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
const LL INF=1e9;
LL a,b,c;
LL ans[100];
LL pow_m(LL x,LL a){
	LL ans=1;
	for(int i=0;i<a;i++)
		ans*=x;
	return ans;
}
LL fun(LL x,LL a){
	return b*pow_m(x,a)+c;
}
bool judge(LL x,LL i){
	LL res=0;
	while(x){
		res+=x%10;
		x/=10;
	}
	if(i==res) return 1;
	else return 0;
}
int main()
{
	int cnt=0;
	scanf("%lld%lld%lld",&a,&b,&c);
	for(int i=1;i<=81;i++){
		LL x=fun(i,a);
		if(judge(x,i)&&x<INF) {
			ans[cnt++] = x;
		}
	}
	cout<<cnt<<endl;
	if(cnt){
		cout<<ans[0];
		for(int i=1;i<cnt;i++)
			cout<<" "<<ans[i];
		cout<<endl;
	}
	return 0;
}



内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值