卷积卷了个啥?卷积定理详解二

        上一章讲到了,卷积实际上是用了很多的小格子来模拟一个函数,并提出了一个疑问:如果g(t)不是冲击函数,是其他的函数可以吗?        

        答案是可以的。那么模拟函数的就不是无数个小格子,而是无数个其他形状了。

        比如上一章中,我们采用阶跃函数,模拟sin函数:

我们也可以尝试用其他的函数拟合sin 函数,比如sigmod函数。

两个sigmoid函数差围成的图像:

 该图像反映的是一个中间厚,两边薄的图像。有点像个饺子。用图像画出来如下。

         

 sigmoid的导数为 sigmoid(x)*(1-sigmoid(x))

再用上面的图像来拟合原函数sinx,就变成了这样:

 

 频率和周期没啥变化,幅度变大了。

         所以,卷积当中不使用阶跃函数,换做其他的函数也是可以的,但是都不如阶跃函数模拟效果好,可以看见模拟的结果会发生变化,甚至和原函数大相径庭。(从卷积定理来看,只有冲击函数的傅里叶变换后是1,使用冲击函数模拟原函数不会发生变形)。在用sigmoid模拟原函数的时候,不是条固定值的线段,而是一条不断变化的曲线。我们可以采用这一段叠加的函数的均值来代替\large \tau点的值。从sigmoid函数的导数图像 和sinx 图像结合起来看,当二者都是波峰的时候,会同时加强,呈现出放大的效果。

        \large f*g=\int_{-\infty }^ {\infty } f(\tau)g(t-\tau)d\tau

        如果我们用sigmoid的导数 \large g(t-\tau ) 和 \large f(\tau )的乘积并求和来代替该段的值,就容易理解了。也可以看成是\large f(\tau )的加权平均值,这个权就是\large g(t-\tau )

        如果\large g(t-\tau )不是冲击函数会引起原函数的变化,那么可以卷积可以理解为一种变换\large g(t-\tau )就是变换因子,有时候也叫卷积核。根据卷积核的不同,可以强化/减弱原函数的某一种特性。

       网络上对卷积的另一种解释是:

        先对g函数进行翻转,相当于在数轴上把g函数从右边褶到左边去,也就是卷积的“卷”的由来。

        然后再把g函数平移到n,在这个位置对两个函数的对应点相乘,然后相加,这个过程是卷积的“积”的过程。

         这种解释感觉是从字面上讲解,就像我们说“翔”,字面意思是转着飞,不知道啥时候变成屎了。单从卷积的字面意思讲,很难知道怎么使用。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值