卷积到底卷了个啥?--卷积定理详解(一)

        卷积的公式我背得滚瓜烂熟。你要让我计算一个卷积,我也算得出来。但是你要问我啥时候应该用卷积,我还真不知道,卷积用来干嘛的呢?
        先看卷积的公式:

\large F(t)=\int_{-\infty }^ {\infty } f(\tau)g(t-\tau)d\tau

        这是个啥啊,两个函数的乘积再做积分,有点像傅里叶正变换,也是2个函数乘积再做积分。是不是暗示着这二者之间的联系。

\large F(\omega) = \int_{-\infty}^\infty f(x)e^{ i \omega x} \,\mathrm{d} x

        是的,这两者都是看世界不同的方式。

        傅里叶变换是把函数看成是三角函数(正弦和/或余弦函数)线性组合。

        而卷积是把函数看成是很多个格子的组合

        

         卷积怎么就是这些小格子的组合了呢?这里要引入一个新的函数--阶跃函数。

         对t 做 t+t_{0}或者 t-t_{0}操作,则会使图像移动:

         如果用2个阶跃函数做差,则留下一个小格子:

         我们再用无数个这样的小格子,可以组成原函数。于是原函数可以写成如下形式:

        F(t)=\sum_{-\infty}^{+\infty} f(n\Delta t)\cdot ( \varepsilon (t-n\Delta t)-\varepsilon (t-n\Delta t-\Delta t) )

        n代表是第几个格子,又因为阶跃函数的高度总是1,所以需要乘以个f(n\Delta t),f(n\Delta t)可以看成是第n个小格子的高。

        再对上面的公式做一点小变换,我们对后面那一坨,乘以一个\Delta t,再除以\Delta t,则有

        \sum_{-\infty}^{+\infty} f(n\Delta t)\frac{\varepsilon (t-n\Delta t)-\varepsilon (t-n\Delta t-\Delta t)}{\Delta t} \Delta t

         假设\Delta t足够的小,后面那一坨实际就是阶跃函数\varepsilont时刻的导数:

\lim_{t \to 0}\frac{\varepsilon (t-n\Delta t)-\varepsilon (t-n\Delta t-\Delta t)}{\Delta t} = {\varepsilon (t-\Delta t)}'

        我们把这个导数写成:

{\varepsilon (t-n\Delta t)}' = g(t-n\Delta t)

g函数被称为冲击函数:只在0处有值,其他地方都是0 

        再把累加换成积分,n\Delta t换成\tau,于是就有了:

\large F(t)=\int_{-\infty }^ {\infty } f(\tau)g(t-\tau)d\tau

        实际我们看出来,卷积和傅里叶变换是等价,都是对于函数的2种不同的分解。不同的地方在于,傅里叶变换是把函数分解成三角函数(正弦和/或余弦函数)线性组合,而卷积是无限多个小格子的组合。傅里叶分解是在频域中分解,卷积是在时域中分解,其实是一回事。所以我们说:

        时域上的乘积相当于频域上的卷积(卷积定理)

        f(t)*g(t) \Leftrightarrow F(j\omega )G(j\omega )

注:单位冲击函数的傅里叶变换后,只存在直流分量,且为1

        回到文章开始的问题中来,卷积可以干什么?傅里叶变换能做的事情,卷积都能做。比如滤波、去噪、边缘检测等.

        那么新的问题来了,g(t)不用冲击函数行不行,要是用其他的函数是啥意思呢。请看我另一篇文章。

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值