序列模式挖掘:数据挖掘中的关键技术
1 引言
在当今信息爆炸的时代,数据挖掘已经成为从海量数据中提取有价值信息的关键技术。尤其是在处理时间序列数据时,挖掘隐藏在数据中的模式和规律显得尤为重要。时间序列数据在多个领域中广泛存在,如生物信息学、网络流量、系统日志等。本文将详细介绍序列模式挖掘的概念、应用场景、现有技术以及基于演化算法的新模型。
2 序列模式挖掘的概念
2.1 什么是序列模式挖掘?
序列模式挖掘是指在时间序列数据中寻找一致的模式和系统关系的过程。它旨在从数据集中提取隐含的、先前未知的序列信息,这些信息在未来可能会有用。例如,在交通系统中,像“某条道路在某一天交通量大,那么同一天另一条道路也可能交通量大”这样的顺序信息对于分析时间相关数据以发现其内在特征非常有价值。
2.2 时间相关数据库与序列数据库
时间相关数据库是由时间索引的数据元组组成的数据库,它记录了随着时间变化的一系列值或事件。时间相关数据库是许多应用领域收集的数据的典型表示,例如股票市场、生产系统、科学实验、医疗应用等。因此,时间相关数据库可以被视为一种序列数据库。
| 时间 | A1 | A2 | A3 |
|---|---|---|---|
| 0001 | Low | Middle | High |
| 0002 |
超级会员免费看
订阅专栏 解锁全文
1342

被折叠的 条评论
为什么被折叠?



