求解n的阶乘的十进制表示的最右非零位上的数字[转]

下面是算法说明

如果用 C 表示 [n/5] + [n/25] + [n/125] + ..., 那么需要求的是下面的同余方程

         n ! ≡ x * 10^c (mod 10^(c+1))

的解 x , 0< x ≤ 9.
上面这个同余方程等价于下面的方程组

        n! ≡ x * 5^c * 2^c (mod 2^(c+1)), n! ≡ x * 2^c * 5^c (mod 5^(c+1))

当 n > 1 时所有的偶数都是上面的方程组中第一个方程的解,而且, n > 1 时该方程组的
第一个方程没有奇数解,因此 n > 1 时只需要考虑下面这个方程(即方程组的第二个方程)
的符合 0 < x <9 的偶数解:

         n! ≡ x * 2^c * 5^c (mod 5^(c+1)).                         (a)

用 h(n) 表示 所有与 5 互素且不大于 n 的正整数的连乘积, 则 n! 可以表为

h(n) * 5^[n/5] * h([n/5]) * 5^[n/25] * h([n/25]) * 5^[n/125] * h([n/125]) *... ,

代入 (a) 式,消去 5 的乘方后得到下面的同余方程

         h(n) * h([n/5]) * h([n/25]) * ... ≡ x * 2^c (mod 5), (b)

由于 3 * 2 ≡ 1 (mod5), 因此 (b) 式变为
   
         3^c * h(n) * h([n/5]) * h([n/25]) * ...≡ x (mod5),         (c)

由 Euler-Fermat 公式知( % 表示求模运算 )

         3^c ≡ 3 ^ (c % 4) (mod 5),

由 Wilson 定理有

         h(n) ≡ (-1)^([n/5]) * (( n % 5 )! ) (mod 5),

把上面两式代入 (c) 就得到了

         3^(c%4) * (-1)^c * ( n % 5 )! * ([n/5] % 5)! * ([n/25] % 5)!*...

≡ x (mod 5)                                                  (d)

由 c 的表达式可知, 我们可以在求 [n/5],[n/25],[n/125],... 的过程中
求出 c 和 (n % 5)!,([n/5] % 5)!,([n/25] % 5)!,..., 这样就可以求得
(d) 式的左边.把最后的结果 模 5 后即可以求得 x.

这个过程实际上是用连除法求 n 的 5 进制表示. 由于 5 进制表示的 各个 位上的数字是任意的,因此 (d) 式的左边已不能再简化.由于任意 求进制表示的 方法本质上都是连除法,因此这个算法 本质上 已是最优算法..

这是一个时间复杂度 O(log n) 的算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值