欧几里得(辗转相除)证明

gcd(a,b)=gcd(b,a%b)         a>0, b>0

证明: 假设最大公约数为c  则a=kc,b=jc (k,j均为整数)

① 由于c为最大公约数 ,所以k,j必然互质。

②另r=a mod b 则 a = bm+r 由此可得 r=a-bm = a - mjc = (k-mj)c

③ 我们现在要证明的命题是gcd(a,b)=gcd(b,a%b) ,已知gcd(a,b)=c,现只需证明gcd(b,r)=c,即gcd(jc,(k-mj)c)=c,即j与k-mj互质,显然,若j与k-mj不互质则j与k不互质,矛盾,所以gcd(b,r)=c。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值