模式识别 | MATLAB实现DNN深度神经网络模式分类识别

本文介绍了如何使用MATLAB实现DNN深度神经网络进行多特征分类预测。DNN因其强大的非线性拟合能力而适用于复杂模式识别,但训练过程可能需要大量数据和技巧。通过TrainRecovery.m进行训练,Identify.m实现识别,并提供相关程序代码参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类预测 | MATLAB实现DNN全连接神经网络多特征分类预测

基本介绍

DNN的结构不固定,一般神经网络包括输入层、隐藏层和输出层,一个DNN结构只有一个输入层,一个输出层,输入层和输出层之间的都是隐藏层。每一层神经网络有若干神经元,层与层之间神经元相互连接,层内神经元互不连接,而且下一层神经元连接上一层所有的神经元。
隐藏层比较多(>2)的神经网络叫做深度神经网络(DNN的网络层数不包括输入层),深度神经网络的表达力比浅层网络更强,一个仅有一个隐含层的神经网络就能拟合任何一个函数,但是它需要很多很多的神经元。
优点:由于DNN几乎可以拟合任何函数,所以DNN的非线性拟合能力非常强。往往深而窄的网络要更节约资源。
缺点:DNN不太容易训练,需要大量的数据,很多技巧才能训练好一个深层网络。

1

任务描述

  • MATLAB-DNN
    一种用MATLAB实现的可自定义层数的DNN:针对MNIST进行训练、验证,图形化展示loss和accuracy随迭代次数的变化曲线。
  • TrainRecovery.m
    这是对DNN进行训练的主函数。
  • Identify.m
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值