时序预测 | MATLAB实现Hamilton滤波AR时间序列预测

本文介绍了如何使用MATLAB实现Hamilton滤波器进行AR时间序列预测,探讨了预测效果和滤波器设计,特别是针对非因果性的单侧滤波器,旨在提高预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时序预测 | MATLAB实现Hamilton滤波AR时间序列预测

预测效果

1

基本介绍

预测在很大程度上取决于适合周期的模型和所采用的预测方法,就像它们依赖于过滤器提取的周期一样。标准 Hodrick-Prescott 滤波器使用输入序列的过去和未来值计算双边中心差来估计时间 t 的二阶导数。 因此,过滤器通常应用于历史数据。 然而,这种非因果性可能会导致最终效应,使过滤后的数据具有回顾性和人为的预测能力. 为了解决这种失真问题,考虑了一种单侧版本的滤波器,仅使用输入序列的当前值和先前值。 当新数据可用时,单侧过滤器不会修改输出。 单侧过滤器旨在产生稳健的预测性能,而不是提取长期趋势。 这一修订后的目标重新定义了经济周期的概念。hfilter 函数实现了 Hamilton 滤波器。

程序设计

load Data_GDP
GDP = Data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值