论文辅导 | 基于多尺度分解的LSTM⁃ARIMA锂电池寿命预测

辅导文章

在这里插入图片描述

模型描述

锂电池剩余使用寿命(Remaining useful life,RUL)预测是锂电池研究的一个重要方向,通过对RUL的准确预测,可以更好地管理和维护电池,延长电池使用寿命。为了能够准确预测锂电池的RUL,提出了一种集合变分模态分解(Variational mode decomposition,VMD)、长短时记忆网络(Long short⁃term memory,LSTM)和自回归移动平均模型(Autoregressive integrated moving average,ARIMA)相结合的锂电池 RUL 预测模型。该模型首先采用VMD算法将NASA锂电池数据集中的容量数据分解为多个高频分量和低频分量,以此减少容量数据中的噪声干扰,然后针对各个分量的特点,分别利用LSTM和ARIMA对分解所得的高频分量和低频分量建立预测子模型,最后将各个子模型的预测值进行叠加重构得到锂电池的RUL结果。实验结果表明VMD⁃LSTM⁃ARIMA预测模型相比于其他预测模型,该模型具有较好的锂电池RUL预测能力。并在CALCE锂电池数据集上进行了泛化性实验,结果表明该模型适用于不同电池RUL预测任务。

在这里插入图片描述

预测效果

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值