BiGRU双向门控循环单元分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角

BiGRU双向门控循环单元分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角


主要功能

实现基于双向门控循环单元(BiGRU) 的分类模型,用于多类别数据分类,包含完整流程:

  1. 数据预处理(打乱、分层划分、归一化)
  2. BiGRU模型构建与训练
  3. 性能评估(准确率、混淆矩阵)
  4. 可解释性分析(SHAP值计算与可视化)

算法步骤

  1. 数据准备

    • 导入Excel数据集(最后一列为类别标签)
    • 打乱数据顺序(randperm
    • 分层抽样:按类别比例70%划分训练集/测试集
  2. 数据预处理

    • 归一化特征(mapminmax到[0,1]区间)
    • 数据平铺
    • 标签转换为分类类型(categorical
  3. BiGRU模型构建
    使用自定义翻转层(FlipLayer) 实现双向序列处理

  4. 模型训练

    • 优化器:Adam(初始学习率0.01)
    • 批大小:50
    • 最大轮次:100(50轮后学习率减半)
    • 监控训练进度
  5. 预测与评估

    • 计算训练/测试集准确率
    • 绘制预测结果对比曲线
    • 生成混淆矩阵
  6. SHAP可解释性分析

    • 基于测试样本计算SHAP值
    • 生成三图:
      • SHAP摘要图(特征重要性分布)
      • 特征重要性条形图
      • 特征依赖图

技术路线

模块关键技术
数据划分分层抽样(按类别比例拆分)
数据归一化mapminmax 动态归一化(保留参数供测试集使用)
网络结构双向GRU + 自定义翻转层 + 特征拼接(Concatenation)
训练优化Adam优化器 + 分段学习率下降 + 批训练
可解释性SHAP值计算

关键参数设定

参数作用
num_size0.7训练集占比
numHiddenUnits40GRU隐藏层神经元数
MiniBatchSize50批大小
MaxEpochs100最大训练轮次
InitialLearnRate0.01初始学习率
LearnRateDropPeriod50学习率下降周期
LearnRateDropFactor0.5学习率下降因子

运行环境要求

MATLAB版本:2020b及以上(依赖confusionchart和深度学习工具箱)


应用场景

  1. 多分类时序问题

    • 适用数据维度:num_dim维时序特征 + 单列类别标签
    • 示例场景:
      • 信号分类
      • 工业设备故障诊断
      • 模式识别
  2. 模型可解释性需求场景

    • 需明确特征贡献度的领域(如医疗诊断、金融风控)

数据集
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

完整代码私信回复BiGRU双向门控循环单元分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现

解释随机森林模型中单个预测特征贡献,你可以使用SHAP库来计算每个特征Shapley值。这些值代表了每个特征预测结果的具体贡献。使用TensorFlow或Keras实现的示例步骤如下: 参考资源链接:[理解SHAP:机器学习模型解释工具的实践指南](https://wenku.csdn.net/doc/2gdskp05ui) 首先,确保安装了shap库。接着,加载你的随机森林模型和测试数据集。以下是详细的代码示例,演示了如何使用SHAP解释模型中的单个预测: ```python import shap import numpy as np from sklearn.ensemble import RandomForestClassifier import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense # 假设已有训练好的随机森林模型和测试数据 rf_model = RandomForestClassifier() rf_model.fit(X_train, y_train) # X_train, y_train是你的训练数据集 # 创建一个SHAP explainer对象 explainer = shap.TreeExplainer(rf_model) shap_values = explainer.shap_values(X_test) # X_test是你的测试数据集 # 选择一个特定的预测进行解释 index = 0 # 选择第0个测试样本来解释预测 shap.initjs() shap.force_plot(explainer.expected_value, shap_values[index, :], X_test.iloc[index, :]) # 如果你想进行全局解释,可以生成一个summary plot来展示所有特征的平均影响 shap.summary_plot(shap_values, X_test, feature_names=X_test.columns) ``` 在这段代码中,我们首先加载了一个预先训练好的随机森林分类器。然后,我们创建了一个SHAP解释器,它计算了模型对测试数据集的特征贡献。通过shap.force_plot,我们可以可视化单个预测特征贡献。此外,shap.summary_plot可以帮助我们了解在整个数据集上,各特征模型预测的影响程度。 这个过程不仅帮助我们理解单个预测背后的决策逻辑,还可以让我们对模型全局行为有一个更直观的认识。通过这种方式,我们可以获得对模型的信任,并在必要时进行模型的优化或调整。 理解SHAP:机器学习模型解释工具的实践指南》是本教程的参考资料,它提供了从基本概念到实际应用的详细解释,涵盖了如何使用SHAP进行模型解释的各个方面。通过深入学习这份资料,你将能够更全面地掌握SHAP的使用方法,并能够有效地应用于你的机器学习项目中。 参考资源链接:[理解SHAP:机器学习模型解释工具的实践指南](https://wenku.csdn.net/doc/2gdskp05ui)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值