TensorFlow之优化器Optimizer

原创博客,转载请注明出处!

 

一、TensorFlow的优化器类

在TensorFlow中,编写好前向函数和损失函数后,可以直接调用TensorFlow自带的优化器去优化损失函数。

在TensorFlow中,每个优化方法都是一个类,常见的几种优化方法如下:

GradientDescentOptimizer 
AdagradOptimizer 
AdagradDAOptimizer 
MomentumOptimizer 
AdamOptimizer 
RMSPropOptimizer
FtrlOptimizer

 

二、常用optimizer类讲解

1、tf.train.Optimizer

这是上面各种优化器类的父类。所以它的一些方法也是上述优化器类的通用方法。

(1)compute_gradients

计算var_list中变量的损失梯度。它是下面介绍的minimize()方法的第一部分,它返回一个(变量的梯度,变量)对的列表,其中梯度可以是张量、索引切片或无梯度(如果给定的变量无梯度)。

compute_gradients(loss,var_list=None,
    gate_gradients=GATE_OP,
    aggregation_method=None,
    colocate_gradients_with_ops=False,
    grad_loss=None)

loss:要最小化值的张量,即损失函数。

var_list:要更新的变量对象的列表或元组,以最小化损失。默认为GraphKeys.TRAINABLE_VARIABLES图表下收集的变量列表。

gate_gradinets:计算梯度的方式,可以是GATE_NONE, GATE_OP, 或GATE_GRAPH

aggregation_method:指定用于组合渐变项的方法。在类AggregationMethod中定义了有效值

colocate_gradients_with_ops:尝试将梯度和相应地op并置

grad_loss:保持为损失计算梯度的张量。

 

&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值