01背包问题

该问题是一个经典的背包问题,通过动态规划算法求解。建立二维数组f[i][j]存储前i种物品中选择总体积不超过j的最大价值,考虑物品选与不选两种情况更新数组。最后输出f[M][T]即为答案。
摘要由CSDN通过智能技术生成

题目描述

思路建立 :

给出 n 种物品,每种物品有一个价值(v[ i ])和体积(w[ i ])且每种物品只有一件,给定一个体积 m,求从这 n 种物品中选任意件且总体积不超过  m ,总价值最大是多少。
1、 建立一个二维数组f[ i ][ j ],其表示从前 i 种物品中选择总体积不超过 j 的所有选法中价值最大的选法;

2、计算:

f[ i ][ j ]有两种情况:

(1)第 i 种物品选了:f[ i ][ j ] = f[ i - 1 ][ j - v[ i ] ] + w[ i ];

(2)第 i 种物品没选:f[ i ][ j ] = f[ i - 1 ][ j ];

3、初始化边界:f[ 0 ][ i ] = 0;

代码:
#include <iostream>
using namespace std;
int T, M;
int f[110][1010];    
int v[110], w[110];
 
int main()
{
    cin >> T >> M;
    
    for(int i = 1; i <= M; i++ ) cin >> v[i] >> w[i];
    
    for (int i = 1; i <= M; i ++ )
        for (int j = 1; j <= T; j ++ )
        {
            f[i][j] = f[i - 1][j];
            if (j >= v[i]) 
                f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
         
    cout << f[M][T] << endl;
    
    return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值