题目描述
思路建立 :
给出 n 种物品,每种物品有一个价值(v[ i ])和体积(w[ i ])且每种物品只有一件,给定一个体积 m,求从这 n 种物品中选任意件且总体积不超过 m ,总价值最大是多少。
1、 建立一个二维数组f[ i ][ j ],其表示从前 i 种物品中选择总体积不超过 j 的所有选法中价值最大的选法;
2、计算:
f[ i ][ j ]有两种情况:
(1)第 i 种物品选了:f[ i ][ j ] = f[ i - 1 ][ j - v[ i ] ] + w[ i ];
(2)第 i 种物品没选:f[ i ][ j ] = f[ i - 1 ][ j ];
3、初始化边界:f[ 0 ][ i ] = 0;
代码:
#include <iostream>
using namespace std;
int T, M;
int f[110][1010];
int v[110], w[110];
int main()
{
cin >> T >> M;
for(int i = 1; i <= M; i++ ) cin >> v[i] >> w[i];
for (int i = 1; i <= M; i ++ )
for (int j = 1; j <= T; j ++ )
{
f[i][j] = f[i - 1][j];
if (j >= v[i])
f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
cout << f[M][T] << endl;
return 0;
}