BZOJ 3309 DZY Loves Math

题目链接

题意

i=1aj=1bf(gcd(i,j))

其中
f(x)={α1,x=p1α1p2α2+...+pnαn,α1>α2,...,αn0,x=1

推导

法一:艾弗森约定

gcd(i,j)=k , 则有 gcd(ik,jk)=1 ,
故原式可化为

k=1min(a,b)i=1akj=1bkf(k)[gcd(i,j)=1]

用莫比乌斯函数将艾弗森约定展开得
k=1min(a,b)f(k)i=1akj=1bkd|i,d|jμ(d)

k=1min(a,b)f(k)d=1min(ak,bk)μ(d)i=1akdj=1bkd

k=1min(a,b)f(k)d=1min(ak,bk)μ(d)akdbkd

T=kd , 得
T=1min(a,b)aTbTd|Tf(Td)μ(d)

显然,接下来的路子就是求前缀和,然后分块计算,然而 关键问题 就是怎么求这个
d|Tf(Td)μ(d)
呢?

参考PoPoQQQ可知,对于

g(T)=d|Tf(Td)μ(d),T=p1α1p2α2...pnαn

g(T)={0,αiαj,(1)(n+1),otherwise

具体证明见上附链接,要点为从 k 个元素中选取奇数个元素的种数 = 选取偶数个元素的种数,因为 (11)k=0C0k+C2k+...=C1k+C3k+...

法二:莫比乌斯反演(待补)

Code

#include <bits/stdc++.h>
#define maxn 10000000
#define maxm maxn + 10
using namespace std;
typedef long long LL;
bool check[maxm];
int prime[maxm], cnt[maxm], val[maxm], g[maxm], sum[maxm];
void init() {
    int tot = 0; g[1] = 0;
    for (int i = 2; i <= maxn; ++i) {
        if (!check[i]) {
            prime[tot++] = i;
            cnt[i] = 1, val[i] = i, g[i] = 1;
        }
        for (int j = 0; j < tot; ++j) {
            if (i * prime[j] > maxn) break;
            check[i * prime[j]] = true;
            if (i % prime[j] == 0) {
                cnt[i * prime[j]] = cnt[i] + 1, val[i * prime[j]] = val[i] * prime[j];
                int temp = (i * prime[j]) / val[i * prime[j]];
                if (temp == 1) g[i * prime[j]] = 1;
                else g[i * prime[j]] = (cnt[temp] == cnt[i * prime[j]] ? -g[temp] : 0);
                break;
            }
            cnt[i * prime[j]] = 1, val[i * prime[j]] = prime[j];
            int temp = (i * prime[j]) / val[i * prime[j]];
            if (temp == 1) g[i * prime[j]] = 1;
            else g[i * prime[j]] = (cnt[temp] == cnt[i * prime[j]] ? -g[temp] : 0);
        }
    }
    for (int i = 1; i <= maxn; ++i) sum[i] = sum[i - 1] + g[i];
}
void work() {
    LL a, b;
    scanf("%lld%lld", &a, &b);
    int le, ri, lim = min(a, b);
    LL ans = 0;
    for (int i = 1; i <= lim; i = ri + 1) {
        le = i, ri = min(a / (a / i), b / (b / i));
        ans += (a / i) * (b / i) * (sum[ri] - sum[le - 1]);
    }
    printf("%lld\n", ans);
}
int main() {
    init();
    int T;
    scanf("%d", &T);
    while (T--) work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值