这篇文章姑且叫做小总结大杂烩吧(大雾)
BZOJ 3930
题意
从区间
[L,H]
中选取
N
个整数,求它们的最大公约数为
1≤N,K≤1e9,1≤L≤H≤1e9,H−L≤1e5
.
推导
就是莫比乌斯反演最常规的套路了
记
f(i)
为
gcd=i
的方案总数,
F(i)
为
i|gcd
的方案总数,显然有
F(i)=∑i|dgcd(d)
反演得
f(i)=∑i|dμ(di)F(d)
题目里要求的即为
f(K)=∑K|dμ(dK)F(d)=∑i=1⌊HK⌋μ(i)F(ik)
注意:这里 i 也就是 倍数 的下界是从
F(x)=(⌊HK⌋−⌈LK⌉+1)n
也可写作
F(x)=(⌊HK⌋−⌊L−1K⌋)n
接下来就是很显然的分块搞一搞了。
且慢……你说什么范围有
1e9
?那还怎么线性筛?
那就先来看另一道题吧~
51nod 1244
题意
求莫比乌斯函数之和,范围 n≤1e10
参考
推导
我们有
∑d|nμ(d)=[n==1]
将左边拆开来
μ(n)+∑d|n,d<nμ(d)=[n==1]
移过去
μ(n)=[n==1]−∑d|n,d<nμ(d)
求个和
∑i=1nμ(i)=∑i=1n[i==1]−∑i=1n∑d|i,d<iμ(d)=1−∑i=1n∑d|i,d<iμ(d)=1−∑k=2n∑d=1⌊nk⌋μ(d)
记 M(n)=∑ni=1μ(i) ,上式可化为
M(n)=1−∑k=2nM(⌊nk⌋)
很显然就可以递归求解了。
具体做的时候设个阈值 1e7 筛一部分算一部分。
奇怪的(…)延伸
其实这部分起初叫做:上面推导没看明白的看这里QWQ
为什么
∑i=1n∑d|i,d<iμ(d)=∑k=2n∑d=1⌊nk⌋μ(d)
呢?
我们一般将里面的部分提前的时候提的是枚举的 因子 d ,这样左边就化为
现在我们考虑提前 倍数,则得到
∑k=2n∑d=1⌊nk⌋μ(d)
其中
k
的含义为 倍数,真是神奇啊(大雾)
之前各种看人家的博客各种看不懂嘤嘤嘤
不过我们也有一些收获。
[n==1]=∑d|nμ(d)
两边求和
1=∑i=1n[i==1]=∑i=1n∑d|iμ(d)=∑d=1n∑i=1⌊nd⌋μ(d)=∑d=1nμ(d)∑i=2⌊nd⌋=∑d=1nμ(d)⌊nd⌋
也就是说
∑d=1nμ(d)⌊nd⌋=1
哇世界真奇妙(大雾)姑且当成一个奇怪的结论吧~
Code
#include <bits/stdc++.h>
#include <map>
#define maxn 10000010
#define maxm maxn + 10
using namespace std;
typedef long long LL;
map<LL, LL> sum;
int prime[maxm], mu[maxm];
bool check[maxm];
void init() {
int tot = 0; mu[1] = 1;
for (int i = 2; i <= maxn; ++i) {
if (!check[i]) {
prime[tot++] = i;
mu[i] = -1;
}
for (int j = 0; j < tot; ++j) {
if (i * prime[j] > maxn) break;
check[i * prime[j]] = true;
if (i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
}
mu[i * prime[j]] = -mu[i];
}
}
for (int i = 1; i <= maxn; ++i) mu[i] += mu[i - 1];
}
LL mu_sum(LL x) {
if (x <= maxn) return mu[x];
if (sum.find(x) != sum.end()) return sum[x];
LL le, ri, ret = 0;
for (LL i = 2; i <= x; i = ri + 1) {
le = i, ri = x / (x / i);
ret += (ri - le + 1) * mu_sum(x / i);
}
return sum[x] = 1 - ret;
}
LL a, b;
void work() {
printf("%lld\n", mu_sum(b) - mu_sum(a - 1));
}
int main() {
init();
while (scanf("%lld%lld", &a, &b) != EOF) work();
return 0;
}
BZOJ 3930 续
有了上一题的基础,这道题就好写了
Code
#include <bits/stdc++.h>
#include <map>
#define maxn 10000010
#define maxm maxn + 10
#define inf 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long LL;
const LL mod = 1e9+7;
map<LL, LL> sum;
int prime[maxm], mu[maxm];
bool check[maxm];
void init() {
int tot = 0; mu[1] = 1;
for (int i = 2; i <= maxn; ++i) {
if (!check[i]) {
prime[tot++] = i;
mu[i] = -1;
}
for (int j = 0; j < tot; ++j) {
if (i * prime[j] > maxn) break;
check[i * prime[j]] = true;
if (i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
}
mu[i * prime[j]] = -mu[i];
}
}
for (int i = 1; i <= maxn; ++i) mu[i] += mu[i - 1];
}
LL mu_sum(LL x) {
if (x <= maxn) return mu[x];
if (sum.find(x) != sum.end()) return sum[x];
LL le, ri, ret = 0;
for (LL i = 2; i <= x; i = ri + 1) {
le = i, ri = x / (x / i);
ret = (ret + (ri - le + 1) * mu_sum(x / i) + mod) % mod;
}
return sum[x] = (1 - ret + mod) % mod;
}
LL poww(LL a, LL b) {
LL ret = 1;
while (b) {
if (b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
LL n, k, l, h;
LL F(LL d) { return poww(h / d - (l-1) / d, n); }
void work() {
LL hi = h / k;
LL ans = 0, le, ri;
for (LL i = 1; i <= hi; i = ri + 1) {
LL temp = i * k;
le = i, ri = min(h / (h / temp), (l-1) / temp ? (l-1) / ((l-1) / temp) : inf) / k;
ans = (ans + mod + (mu_sum(ri) - mu_sum(le - 1) + mod) % mod * F(temp) % mod) % mod;
}
ans = (ans + mod) % mod;
printf("%lld\n", ans);
}
int main() {
init();
while (scanf("%lld%lld%lld%lld", &n, &k, &l, &h) != EOF) work();
return 0;
}
BZOJ 2301
题意
求
∑x=ab∑y=cd[gcd(x,y)=k]
(低配版的BZOJ 3930)
推导
即求
∑i=1n∑j=1m[gcd(i,j)=k]
再容斥一下即可。
因为 gcd(i,j)=k ,所以 gcd(ik,jk)=1 ,所以上式可化为
∑i=1⌊nk⌋∑j=1⌊mk⌋[gcd(i,j)=1]
即
∑d=1min(⌊nk⌋,⌊mk⌋)μ(d)∑i=1⌊nkd⌋∑j=1⌊mkd⌋
即
∑d=1min(⌊nk⌋,⌊mk⌋)μ(d)⌊nkd⌋⌊mkd⌋
分块搞一搞就行了。
Code
#include <bits/stdc++.h>
#define maxn 50000
typedef long long LL;
using namespace std;
int kas, prime[maxn + 10], mu[maxn + 10], pre[maxn];
bool check[maxn + 10];
void mobius() {
int tot = 0;
mu[1] = 1;
for (int i = 2; i <= maxn; ++i) {
if (!check[i]) {
prime[tot++] = i;
mu[i] = -1;
}
for (int j = 0; j < tot; ++j) {
if (i * prime[j] > maxn) break;
check[i * prime[j]] = true;
if (i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
}
mu[i * prime[j]] = -mu[i];
}
}
for (int i = 1; i <= maxn; ++i) pre[i] = pre[i - 1] + mu[i];
}
LL calc(int c, int d) {
if (c > d) swap(c, d);
LL ans = 0;
int le, ri;
for (int i = 1; i <= c; i = ri + 1) {
le = i, ri = min(c / (c / i), d / (d / i));
ans += 1LL * (pre[ri] - pre[le - 1]) * (c / i) * (d / i);
}
return ans;
}
void work() {
int a, b, c, d, k;
scanf("%d%d%d%d%d", &a, &c, &b, &d, &k);
LL tot1 = calc(c / k, d / k), tot2 = calc(c / k, (b-1) / k),
tot3 = calc((a-1) / k, d / k), tot4 = calc((a-1) / k, (b-1) / k);
printf("%lld\n", tot1 - tot2 - tot3 + tot4);
}
int main() {
mobius();
int T;
scanf("%d", &T);
while (T--) work();
return 0;
}