hdu 5608 function 莫比乌斯反演 / 杜教筛

12 篇文章 0 订阅
6 篇文章 0 订阅

题目链接

题意

d|Nf(d)=N23N+2
i=1Nf(i)

N1e9 ,答案 mod(1e9+7)

法一:莫比乌斯反演+杜教筛善后(?) 546ms

(先感叹一句…我真的是学啥忘啥,看到题目就啥都不想直接杜教筛的方式展开压根就忘了莫比乌斯反演…明明是这么优美的莫比乌斯反演的形式啊)

推导

F(n)=n23n+2 ,则由题意有

d|Nf(d)=F(N)

反演得
d|Nμ(Nd)F(d)=f(N)

两边求和得
i=1Nf(i)=i=1Nd|iμ(id)F(d)=k=1Nd=1Nkμ(k)F(d)=i=1Nμ(i)d=1NiF(d)

分块 O(N) 搞一搞,后面的 F() 求和是 O(1) ,前面的 μ() 1e7 以内预处理,后面杜教筛,就搞定惹。
杜教筛的部分我上一篇博客里面 51nod 1244莫比乌斯函数之和也有写到(包括一些十分基础 甚至于愚蠢的推导Orz),当然还是再来推荐一下神犇的 浅谈一类积性函数的前缀和 ——skywalkert

Code

#include <bits/stdc++.h>
#define maxn 10000000
#define maxm maxn + 10
#include <map>
using namespace std;
typedef long long LL;
const LL mod = 1e9+7;
map<int, LL> sum;
int mu[maxm], prime[maxm];
bool check[maxm];
LL inv;
LL poww(LL a, LL b) {
    LL ret = 1;
    while (b) {
        if (b & 1) (ret *= a) %= mod;
        (a *= a) %= mod;
        b >>= 1;
    }
    return ret;
}
void init() {
    int tot = 0; mu[1] = 1;
    for (int i = 2; i <= maxn; ++i) {
        if (!check[i]) {
            prime[tot++] = i;
            mu[i] = -1;
        }
        for (int j = 0; j < tot; ++j) {
            if (i * prime[j] > maxn) break;
            check[i * prime[j]] = true;
            if (i % prime[j] == 0) {
                mu[i * prime[j]] = 0;
                break;
            }
            mu[i * prime[j]] = -mu[i];
        }
    }
    for (int i = 1; i <= maxn; ++i) mu[i] += mu[i - 1];
    inv = poww(3, mod - 2);
}
LL mu_sum(int x) {
    if (x <= maxn) return (LL)mu[x];
    if (sum.find(x) != sum.end()) return sum[x];
    int le, ri;
    LL ret = 0;
    for (int i = 2; i <= x; i = ri + 1) {
        le = i, ri = x / (x / i);
        ret = (ret + ((ri - le + 1) * mu_sum(x / i) + mod) % mod + mod) % mod;
    }
    return sum[x] = (1 + mod - ret) % mod;
}
LL pre(LL x) {
    return x * (x - 1) % mod * (x - 2) % mod * inv % mod;
}
void work() {
    LL n;
    scanf("%lld", &n);
    LL ans = 0, le, ri;
    for (LL i = 1; i <= n; i = ri + 1) {
        le = i, ri = n / (n / i);
        ans = (ans + (mu_sum(ri) - mu_sum(le - 1) + mod) % mod * pre(n / i) % mod + mod) % mod;
    }
    printf("%lld\n", ans);
}
int main() {
    init();
    int T;
    scanf("%d", &T);
    while (T--) work();
    return 0;
}

法二:杜教筛直接上+暴力预处理 811ms

推导

因为

d|Nf(d)=f(N)+d|N,d<Nf(d)=N23N+2

所以
f(N)=N23N+2d|N,d<Nf(d)

两边求和
i=1Nf(i)=i=1N(i23i+2)i=1Nd|i,d<if(d)=i=1N(i23i+2)k=2Nd=1Nkf(d)

G(N)=Ni=1f(i) ,上式即为
G(N)=i=1N(i23i+2)k=2NG(Nk)

杜教筛即可。

其实后面这部分的推导都是套路=。=
想了很久 1e7 G() 该怎么线性筛无果…后来去搜了搜发现很多人都是直接暴力…暴力的话就到 1e6 吧…。
真是一点都不优美啊

Code

#include <bits/stdc++.h>
#define maxn 1000000
#define maxm maxn + 10
#include <map>
using namespace std;
typedef long long LL;
const LL mod = 1e9+7;
map<int, LL> sum;
LL inv, g[maxm];
LL poww(LL a, LL b) {
    LL ret = 1;
    while (b) {
        if (b & 1) (ret *= a) %= mod;
        (a *= a) %= mod;
        b >>= 1;
    }
    return ret;
}
void init() {
    for (int i = 1; i <= maxn; ++i) g[i] = (LL)(i - 1) * (i - 2) % mod;
    for (int i = 1; i <= maxn; ++i) {
        for (int j = i << 1; j <= maxn; j += i) {
            g[j] = (g[j] - g[i] + mod) % mod;
        }
    }
    for (int i = 1; i <= maxn; ++i) (g[i] += g[i - 1]) %= mod;
    inv = poww(3, mod - 2);
}
LL pre(LL x) {
    return x * (x - 1) % mod * (x - 2) % mod * inv % mod;
}
LL g_sum(int x) {
    if (x <= maxn) return g[x];
    if (sum.find(x) != sum.end()) return sum[x];
    int le, ri;
    LL ret = 0;
    for (int i = 2; i <= x; i = ri + 1) {
        le = i, ri = x / (x / i);
        ret = (ret + ((ri - le + 1) * g_sum(x / i) + mod) % mod + mod) % mod;
    }
    return sum[x] = (pre(x) - ret + mod) % mod;
}
void work() {
    LL n;
    scanf("%lld", &n);
    printf("%lld\n", g_sum(n));
}
int main() {
    init();
    int T;
    scanf("%d", &T);
    while (T--) work();
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值