2016-ECCV-Deep3D

Deep3D是一种使用深度卷积神经网络实现全自动2D到3D视频转换的技术。它通过预测差异概率分布图,避免依赖深度传感器数据,可以直接在大量3D电影数据上训练。尽管存在图像模糊和噪声等问题,该方法为2D到3D转换提供了新的自动化解决方案。
摘要由CSDN通过智能技术生成

Deep3D: Fully Automatic 2D-to-3D Video Conversion with Deep Convolutional Neural Networks

目前制作 3D 电影主要有两种方法,并且这两种方法在实际制作中的应用程度基本相同:
其一是用特殊的 3D 立体摄像机直接拍摄成 3D 电影
其二是先拍摄成 2D 电影,然后人工转制 3D
但是这两种方法都不完美,对于第一种方法来说,3D 摄像机昂贵而不方便。而第二种人工转制则需要画家为每一帧画面绘制深度图。

要把一张 2D 图像转换成 3D 立体图,首先需要估测每个像素点相对于相机的距离(即深度图),然后基于深度图来创建两个视角。

该算法中最困难的步骤是估测深度图。需要用图像和深度图数据对来进行训练。由于这种数据对收集起来很困难,所以使用的数据库都比较小,比如 NYU 深度数据库和 KITTI,这类数据库中只包含几百张样例。此外,这些数据集只有静态场景,很难想像如何将这项技术应用到人物照片里。

Deep3D 可以直接在具有数千万帧的 3D 电影的基础上进行训练。我们在进行训练时,把深度图作为一个网络内部的表示,而不是作为末端的预测输出。

把pretrain的model删掉了,初始数据集也没有公布,issue里一堆说这个文章效果不好的
https://zhuanlan.zhihu.com/p/28350142

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WX Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值