一元三次方程x^3-2x+1=0,给定误差0.0001,迭代法求解。有3个实数解,其中一个是1。
有最大迭代次数判断,以及判断迭代是否收敛的算法。
牛顿迭代法
# -*- coding= utf-8 -*-
# 一元三次方程x^3-2x+1=0,给定误差0.0001,迭代法求解。有3个实数解,其中一个是1。
# 有最大迭代次数判断,以及判断迭代是否收敛的算法。
def f(x):
# f的方程
return x**3.0 - 2.0*x + 1.0
def f_first_order(x):
# f的一阶导数
return 3.0 * x ** 2 -2.0
def get_root(x0, max_iter=50, tol = 1e-7):
# 将初始值浮点化
p0 = x0 * 1.0
for i in range(max_iter):
# f的一阶导数不能为0,最普遍的说法是不能非正定
p = p0 - f(p0)/ f_first_order(p0)
# 如果小于精度值则退出迭代
if abs(p - p0) < tol: # tol是判断迭代更新的阈值
return u'经过%s次的迭代,我们估计的参数值是%s' % (i+1,