python实现迭代法解方程

本文介绍了如何使用Python实现迭代法解决一元三次方程x^3-2x+1=0。在误差0.0001的限制下,通过牛顿迭代法、梯度下降法和哈雷迭代法寻找方程的三个实数解,特别指出其中一个解为1。同时,文章涉及了最大迭代次数的设定和判断迭代过程是否收敛的算法。
摘要由CSDN通过智能技术生成

一元三次方程x^3-2x+1=0,给定误差0.0001,迭代法求解。有3个实数解,其中一个是1。
有最大迭代次数判断,以及判断迭代是否收敛的算法。

牛顿迭代法

# -*- coding= utf-8 -*-
# 一元三次方程x^3-2x+1=0,给定误差0.0001,迭代法求解。有3个实数解,其中一个是1。
# 有最大迭代次数判断,以及判断迭代是否收敛的算法。

def f(x):
    # f的方程
    return x**3.0 - 2.0*x + 1.0

def f_first_order(x):
    # f的一阶导数
    return 3.0 * x ** 2 -2.0

def get_root(x0, max_iter=50, tol = 1e-7):
    # 将初始值浮点化
    p0 = x0 * 1.0
    for i in range(max_iter):

        # f的一阶导数不能为0,最普遍的说法是不能非正定
        p = p0 - f(p0)/ f_first_order(p0)

        # 如果小于精度值则退出迭代
        if abs(p - p0) < tol:  # tol是判断迭代更新的阈值

            return u'经过%s次的迭代,我们估计的参数值是%s' % (i+1,
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WX Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值