Langchain的向量存储 - Document高级运用之metadata


前言

前几篇文章中,我们在代码示例里看见Document的组成部分里有metadata
在 LangChain 的向量存储和检索过程中,metadata 可以在多个方面发挥重要作用。虽然在简单的相似性搜索中,主要是通过文本内容的向量进行匹配,但元数据在多个方面可以增强搜索和后处理的效果。

一、元数据可以增强搜索和后处理的效果

1. 提高搜索的准确性和相关性

在一些高级检索场景中,除了使用文本内容的向量表示进行相似性搜索,还可以将元数据作为辅助信息进行加权或筛选。例如:

  • 加权搜索:可以对文档的不同元数据赋予权重,例如标题、作者、发布日期等。通过这种方式,搜索结果不仅仅依赖于内容相似度,还会考虑元数据的匹配程度。
  • 筛选和过滤:在搜索结果中,可以根据元数据进行过滤,比如只返回特定作者的文章或某一日期之后的文档。这种方法在需要精确搜索时非常有用。

2. 提供更丰富的搜索结果展示

在展示搜索结果时,元数据可以用于提供更丰富和有用的信息,使用户更容易理解和选择合适的结果。例如:

  • 显示文档标题和作者:用户在查看搜索结果时,可以看到每篇文档的标题、作者和发布日期等信息,而不仅仅是文档内容的片段。
  • 分类和排序:搜索结果可以根据元数据进行分类和排序,例如按日期排序或按作者分类展示。

3. 支持多种检索模式

元数据可以支持多种检索模式,如混合搜索(hybrid search),即结合向量相似度搜索和基于元数据的布尔搜索。例如:

  • 布尔检索:用户可以指定一些元数据条件,如“查找所有2024年发布的机器学习相关文档”。
  • 混合检索:结合文本内容和元数据进行检索,提高搜索结果的多样性和准确性。

二、 示例分析

我们以之前的 Document 类示例为基础,展示元数据在搜索过程中的实际应用。

1. 示例

from langchain_core.documents import Document
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS

# 创建一些文档对象
docs = [
    Document(
        page_content="Machine learning is a method of data analysis that automates analytical model building.",
        metadata={"title": "Introduction to Machine Learning", "author": "John Doe", "date": "2024-06-06"}
    ),
    Document(
        page_content="LangChain is a powerful framework for building applications with large language models.",
        metadata={"title": "LangChain Overview", "author": "Jane Doe", "date": "2024-06-05"}
    )
]

# 初始化嵌入模型
embeddings = OpenAIEmbeddings()

# 将文档内容转换为向量
vectors = [embeddings.embed(doc.page_content) for doc in docs]

# 使用 FAISS 存储向量
vector_store = FAISS()
for vector, doc in zip(vectors, docs):
    vector_store.add_vector(vector, doc)

# 查询相似文档
query_text = "Data analysis automation"
query_vector = embeddings.embed(query_text)
results = vector_store.similarity_search(query_vector)

# 展示搜索结果,包含元数据
for result in results:
    print("Content:", result.page_content)
    print("Title:", result.metadata["title"])
    print("Author:", result.metadata["author"])
    print("Date:", result.metadata["date"])
    print("------")

2. 结果分析

在上面的示例中,通过将 Document 类中的元数据与搜索结果一起展示,用户可以更直观地了解每个文档的相关信息。

三、高级用法

我们还可以基于元数据进行更高级的操作,如:

  • 基于元数据的筛选

    • 可以仅返回特定作者的文档。
    • 可以过滤掉发布日期早于某一时间的文档。
  • 结果排序

    • 可以按照发布日期排序,确保最新的内容优先展示。
    • 可以按照文档标题或其他元数据字段排序。

1. 示例改进:基于元数据的过滤

假设我们希望在搜索结果中只返回 John Doe 的文档,我们可以这样做:

# 查询相似文档
query_text = "Data analysis automation"
query_vector = embeddings.embed(query_text)
results = vector_store.similarity_search(query_vector)

# 过滤结果
filtered_results = [result for result in results if result.metadata["author"] == "John Doe"]

# 展示过滤后的搜索结果
for result in filtered_results:
    print("Content:", result.page_content)
    print("Title:", result.metadata["title"])
    print("Author:", result.metadata["author"])
    print("Date:", result.metadata["date"])
    print("------")

很高兴你喜欢这个思路!为了进一步强化这个概念,我们可以再扩展一些实际应用中的具体示例,以便更好地理解如何利用元数据进行高级搜索和处理。

2. 高级搜索与排序

假设我们有一个文档库,包含大量技术文档和研究论文,我们希望用户能够根据作者、发布日期、关键词等进行高级搜索和排序。

# 创建文档对象列表
docs = [
    Document(
        page_content="Machine learning is a method of data analysis that automates analytical model building.",
        metadata={"title": "Introduction to Machine Learning", "author": "John Doe", "date": "2024-06-06"}
    ),
    Document(
        page_content="LangChain is a powerful framework for building applications with large language models.",
        metadata={"title": "LangChain Overview", "author": "Jane Doe", "date": "2024-06-05"}
    ),
    Document(
        page_content="Deep learning extends machine learning by introducing neural networks with multiple layers.",
        metadata={"title": "Deep Learning Basics", "author": "John Doe", "date": "2024-05-10"}
    )
]

# 初始化嵌入模型
embeddings = OpenAIEmbeddings()

# 将文档内容转换为向量
vectors = [embeddings.embed(doc.page_content) for doc in docs]

# 使用 FAISS 存储向量
vector_store = FAISS()
for vector, doc in zip(vectors, docs):
    vector_store.add_vector(vector, doc)

# 查询相似文档
query_text = "Neural networks"
query_vector = embeddings.embed(query_text)
results = vector_store.similarity_search(query_vector)

# 过滤和排序结果:只返回 John Doe 的文档,并按日期排序
filtered_results = [result for result in results if result.metadata["author"] == "John Doe"]
sorted_results = sorted(filtered_results, key=lambda x: x.metadata["date"], reverse=True)

# 展示过滤和排序后的搜索结果
for result in sorted_results:
    print("Content:", result.page_content)
    print("Title:", result.metadata["title"])
    print("Author:", result.metadata["author"])
    print("Date:", result.metadata["date"])
    print("------")

3. 布尔检索与混合搜索

我们希望用户可以进行布尔检索,比如查找所有包含特定关键词并且在特定日期之后发布的文档。

# 布尔检索和混合搜索
query_text = "machine learning"
query_vector = embeddings.embed(query_text)

# 假设我们希望查找2024年6月1日之后的文档
date_threshold = "2024-06-01"

# 相似性搜索并基于元数据进行过滤
results = vector_store.similarity_search(query_vector)
filtered_results = [result for result in results if result.metadata["date"] > date_threshold]

# 展示过滤后的搜索结果
for result in filtered_results:
    print("Content:", result.page_content)
    print("Title:", result.metadata["title"])
    print("Author:", result.metadata["author"])
    print("Date:", result.metadata["date"])
    print("------")

4. 多字段排序

用户可能希望对搜索结果进行多字段排序,例如先按作者排序,再按发布日期排序。

# 多字段排序:先按作者排序,再按日期排序
query_text = "machine learning"
query_vector = embeddings.embed(query_text)
results = vector_store.similarity_search(query_vector)

# 多字段排序
sorted_results = sorted(results, key=lambda x: (x.metadata["author"], x.metadata["date"]), reverse=True)

# 展示排序后的搜索结果
for result in sorted_results:
    print("Content:", result.page_content)
    print("Title:", result.metadata["title"])
    print("Author:", result.metadata["author"])
    print("Date:", result.metadata["date"])
    print("------")

总结

元数据在 LangChain 的向量存储和检索过程中具有重要作用,能够显著提高搜索的准确性和相关性,提供更丰富的搜索结果展示,并支持多种检索模式。通过合理利用元数据,可以构建更智能、更高效的搜索和推荐系统。

### LangChain与Tree-Sitter的关系 LangChain 是一种用于构建语言模型应用程序的框架,而 Tree-Sitter 是一种语法解析器生成器工具包,能够为各种编程语言创建高效的解析器。两者的结合使得开发人员能够在自然语言处理 (NLP) 应用程序中更好地理解和操作源代码结构[^2]。 具体来说,LangChain 提供了一个灵活的接口来集成不同的数据源和模型,而 Tree-Sitter 能够提供精确的抽象语法树 (AST),从而增强对代码片段的理解能力。这种组合特别适用于涉及大量代码分析的任务,例如自动化代码审查、代码摘要生成以及跨多语言环境下的语义搜索[^1]。 --- ### 如何结合使用 LangChain 和 Tree-Sitter 为了利用 LangChain 和 Tree-Sitter 的功能,通常需要以下几个部分: #### 1. 安装依赖项 首先安装必要的 Python 包和其他依赖项: ```bash pip install langchain tree-sitter ``` #### 2. 配置 Tree-Sitter 解析器 Tree-Sitter 支持多种编程语言,因此需要下载并配置目标语言的语法文件。以下是一个简单的示例,展示如何设置 JavaScript 的解析器: ```python import tree_sitter # 加载 JavaScript 语言的 grammar 文件 JS_LANGUAGE = tree_sitter.Language('build/my-languages.so', 'javascript') # 创建解析器实例 parser = tree_sitter.Parser() parser.set_language(JS_LANGUAGE) ``` #### 3. 使用 LangChain 处理 AST 数据 一旦有了 Tree-Sitter 的解析结果(即 AST),就可以将其传递给 LangChain 进行进一步处理。下面是一段完整的代码示例,演示如何提取函数名并将它们存储LangChain 中以便后续查询: ```python from langchain.docstore.document import Document from langchain.indexes import VectorStoreIndexWrapper from langchain.vectorstores import FAISS from langchain.embeddings.openai import OpenAIEmbeddings def extract_function_names(tree, source_code): """从 AST 中提取所有的函数名称""" function_names = [] def traverse(node): if node.type == 'function_declaration': identifier_node = node.child_by_field_name('name') if identifier_node is not None: function_names.append(source_code[identifier_node.start_byte:identifier_node.end_byte]) for child in node.children: traverse(child) traverse(tree.root_node) return function_names # 假设我们有如下一段 JavaScript 源码 source_code = """ function add(a, b) { return a + b; } function subtract(a, b) { return a - b; } """ # 使用 Tree-Sitter 解析这段代码 tree = parser.parse(bytes(source_code, "utf8")) # 提取所有函数名称 functions = extract_function_names(tree, source_code) # 将这些函数封装成 LangChain 文档对象 documents = [Document(page_content=f"Function {func}", metadata={"language": "JavaScript"}) for func in functions] # 构建向量索引 embeddings = OpenAIEmbeddings() # 替换为你自己的嵌入服务 vector_store = FAISS.from_documents(documents, embeddings) index = VectorStoreIndexWrapper(vectorstore=vector_store) # 查询某个特定函数的信息 query_result = index.query("What are the available functions?") print(query_result) ``` 上述代码展示了如何通过 Tree-Sitter 获取代码中的函数声明,并将这些信息作为文档输入到 LangChain 的矢量化索引中[^4]。 --- ### 总结 LangChain 和 Tree-Sitter 的结合提供了强大的代码理解能力和灵活性。Tree-Sitter 主要负责生成高质量的 AST 表达形式,而 LangChain 则专注于管理这些结构化数据并与大型语言模型交互。这样的架构非常适合于复杂的代码检索场景,比如智能 IDE 插件或自动化的代码辅助工具开发[^5]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值