Langchain的向量索引(2)


一、在使用 VectorstoreIndexCreator 创建索引时,如何指定使用 FAISS 作为底层的向量存储

VectorstoreIndexCreator 允许你灵活地选择具体的向量存储实现,从而简化索引创建的过程。

以下是一个使用 VectorstoreIndexCreator 并指定 FAISS 作为向量存储的示例:

1. 示例代码

1) 安装依赖(如果尚未安装):

pip install langchain faiss-cpu

2) 代码示例

from langchain.vectorstores import faiss
from langchain.indexes import VectorstoreIndexCreator
from langchain.embeddings import OpenAIEmbeddings

# 假设我们有一些文本数据
texts = [
    "这是第一段文本。",
    "这是第二段文本。",
    "这是第三段文本。"
]

# 创建嵌入模型(这里假设使用 OpenAI 的嵌入模型)
embedding_model = OpenAIEmbeddings()

# 使用嵌入模型将文本转换为嵌入向量
embeddings = [embedding_model.embed(text) for text in texts]

# 创建 FAISS 向量存储
faiss_store = faiss.FAISS(embeddings, texts)

# 使用 VectorstoreIndexCreator 并指定 FAISS 向量存储
index_creator = VectorstoreIndexCreator(vectorstore=faiss_store)

# 创建索引
vector_index = index_creator.create_index()

# 执行查询
query_text = "这是查询文本。"
query_vector = embedding_model.embed(query_text)
results = vector_index.query(query_vector)

# 输出结果
for result in results:
    print(result)

2. 关键步骤解释

1) 创建嵌入模型
使用 OpenAIEmbeddings 或其他嵌入模型将文本数据转换为向量表示。

2) 创建 FAISS 向量存储
使用 langchain.vectorstores.faiss 创建一个 FAISS 向量存储实例,存储文本及其对应的嵌入向量。

3) 使用 VectorstoreIndexCreator
使用 VectorstoreIndexCreator 并指定 faiss_store 作为底层向量存储。

4) 创建索引
调用 create_index 方法创建索引。

5) 执行查询
将查询文本转换为嵌入向量,并使用创建的索引进行查询,输出查询结果。

二、建立索引前如何拆分并重叠文件呢

如果你有一个需要切割和重叠的文件,可以使用 langchain.text_splitter 模块来处理文件中的文本。以下是如何结合文本切割、向量存储和索引创建的完整示例:

1. 安装必要的库

如果尚未安装相关库,请先安装:

pip install langchain faiss-cpu

2. 代码示例

假设你有一个文本文件 document.txt,你希望将其切割成重叠的段落,然后使用 FAISS 创建向量索引:

from langchain.vectorstores import faiss
from langchain.indexes import VectorstoreIndexCreator
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter

# 读取文件内容
with open("document.txt", "r", encoding="utf-8") as file:
    document_text = file.read()

# 定义文本切割器
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)

# 将文件内容切割成重叠段落
texts = text_splitter.split_text(document_text)

# 创建嵌入模型(这里假设使用 OpenAI 的嵌入模型)
embedding_model = OpenAIEmbeddings()

# 使用嵌入模型将文本段落转换为嵌入向量
embeddings = [embedding_model.embed(text) for text in texts]

# 创建 FAISS 向量存储
faiss_store = faiss.FAISS(embeddings, texts)

# 使用 VectorstoreIndexCreator 并指定 FAISS 向量存储
index_creator = VectorstoreIndexCreator(vectorstore=faiss_store)

# 创建索引
vector_index = index_creator.create_index()

# 执行查询
query_text = "这是查询文本。"
query_vector = embedding_model.embed(query_text)
results = vector_index.query(query_vector)

# 输出结果
for result in results:
    print(result)

3. 关键步骤解释

1)读取文件内容
读取文件 document.txt 的全部内容。

2)定义文本切割器
使用 RecursiveCharacterTextSplitter 定义文本切割器,指定每个文本块的大小(chunk_size)和重叠部分的大小(chunk_overlap)。

3)切割文本
使用文本切割器将文件内容切割成重叠的段落。

4) 创建嵌入模型
使用 OpenAIEmbeddings 或其他嵌入模型将文本段落转换为向量表示。

5) 创建 FAISS 向量存储
使用 langchain.vectorstores.faiss 创建一个 FAISS 向量存储实例,存储文本段落及其对应的嵌入向量。

6) 使用 VectorstoreIndexCreator
使用 VectorstoreIndexCreator 并指定 faiss_store 作为底层向量存储。

7) 创建索引
调用 create_index 方法创建索引。

8) 执行查询
将查询文本转换为嵌入向量,并使用创建的索引进行查询,输出查询结果。

通过这种方式,你可以将大文件切割成适合处理的文本块,并创建和管理高效的向量索引,从而支持高效的文本检索。

三、如何使用VectorstoreIndexCreator 自带文本切割和重叠功能

VectorstoreIndexCreator 自带文本切割和重叠功能,可以简化整个流程。你可以直接使用 VectorstoreIndexCreator 来处理文本的切割、嵌入和索引创建,无需手动实现这些步骤。以下是如何使用 VectorstoreIndexCreator 创建索引并指定 FAISS 向量存储的示例。

1. 安装必要的库

确保安装了所需的库:

pip install langchain faiss-cpu

2. 代码示例

假设你有一个文本文件 document.txt,可以使用 VectorstoreIndexCreator 来处理整个流程:

from langchain.indexes import VectorstoreIndexCreator
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import faiss

# 读取文件内容
with open("document.txt", "r", encoding="utf-8") as file:
    document_text = file.read()

# 定义文本切割器
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)

# 创建嵌入模型(假设使用 OpenAI 的嵌入模型)
embedding_model = OpenAIEmbeddings()

# 使用 VectorstoreIndexCreator,并指定文本切割器和嵌入模型
index_creator = VectorstoreIndexCreator(
    text_splitter=text_splitter,
    embeddings=embedding_model,
    vectorstore_cls=faiss.FAISS
)

# 创建索引(这里假设 `document_text` 是需要处理的文本)
vector_index = index_creator.from_text(document_text)

# 执行查询
query_text = "这是查询文本。"
results = vector_index.query(query_text)

# 输出结果
for result in results:
    print(result)

3. 关键步骤解释

1) 读取文件内容
读取文件 document.txt 的全部内容。

2) 定义文本切割器
使用 RecursiveCharacterTextSplitter 定义文本切割器,指定每个文本块的大小(chunk_size)和重叠部分的大小(chunk_overlap)。

3) 创建嵌入模型
使用 OpenAIEmbeddings 或其他嵌入模型将文本段落转换为向量表示。

4) 使用 VectorstoreIndexCreator
创建 VectorstoreIndexCreator 实例,指定文本切割器、嵌入模型和向量存储类(这里使用 faiss.FAISS)。

5) 创建索引
使用 from_text 方法从文本创建索引,这一步会自动处理文本的切割、嵌入和向量存储的创建。

6) 执行查询
将查询文本转换为嵌入向量,并使用创建的索引进行查询,输出查询结果。

通过这种方式,你可以简化整个流程,无需手动实现文本切割和向量存储的创建。VectorstoreIndexCreator 会自动处理这些步骤,使代码更加简洁和易于维护。

  • 30
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值