【习题集一】监督学习

详细的问题和题解可查看网易公开课提供的课件下载。


1. 使用用牛顿法计算最小平方

我们希望证明:当使用牛顿法解决最小平方优化问题时,只需一步即可迭代至最优解

解:

(1)计算损失函数J(θ)的Hessian矩阵

已知损失函数表达式为

则其一阶导数为

二阶导数为

因此J(θ)的Hessian矩阵为 H=X^T*X

(2)计算一次迭代后的结果


这与最优解θ*是一致的,得证。


2. 局部加权Logistic回归

由于没有找到训练和测试的数据,本题不再详解。


3. 多元最小平方

在之前的课程中,我们一致认为分类/回归的结果y是一个标量,现在我们将其推广至一个p维的向量

解:

(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值