在Dify平台中,提示词(Prompt)是定义对话助手行为的关键工具,通过合理的提示词设计,可以引导大模型生成符合场景需求的回复。以下是Dify提示词的使用方法及具体示例:
一、提示词基础结构
-
角色定义与指令约束
在提示词中需明确AI的角色和任务要求。例如,定义AI为“乐于助人的助手”,并规定回复逻辑:你是一位乐于助人的AI助手。在回答用户问题时,你需要: 1. 始终使用自然语言解释你将要采取的行动; 2. 在调用工具前说明使用的工具及原因; 3. 清晰描述正在进行的操作; 4. 避免返回空回复。
此结构常用于需要调用工具的场景(如天气查询),确保用户理解AI的每一步操作。
-
变量插入
使用{{变量名}}
动态替换用户输入或上下文信息。例如,构建面试官应用时,提示词可包含动态职位名称:我想让你担任{{jobName}}面试官。你将向我询问{{jobName}}开发工程师职位的面试问题。
变量通过用户输入或预定义值填充,增强提示词的灵活性。
二、高级应用示例
-
结合知识库的问答
若需让模型基于本地知识库回答,需在提示词中引入知识库内容。例如,构建课程查询助手时,提示词可设计为:根据以下知识库内容回答问题: {{知识库内容}} 用户问题:{{input}}
知识库内容通过Dify的数据集功能动态加载,确保模型回答与私有数据一致。
-
多模态输入处理
对于支持图像输入的模型(如Qwen-VL),提示词需明确处理多模态数据的指令。例如,票据识别场景的提示词:根据图片识别内容,生成包含以下字段的JSON:起始站、终点站、车次、票价。
需在模型配置中启用视觉支持,并选择兼容的多模态模型。
-
条件分支与流程控制
通过提示词引导模型输出特定格式,用于工作流中的条件判断。例如,记忆助手中判断是否需要存储信息:判断用户输入是否需要记忆,仅输出“Yes”或“No”。
模型输出结果将触发不同的分支处理(如存储或直接回复)。
三、调试与优化建议
-
模型参数调整
在Dify的提示词编排界面,可调整温度(Temperature)和最大生成长度(Max Tokens)等参数。例如,降低温度值(如0.3)可减少随机性,适用于需要确定性输出的场景。 -
日志分析
通过查看“Prompt日志”分析模型实际接收的提示词及回复,定位问题。例如,若模型未正确调用工具,可能是提示词中工具描述不清晰。 -
专家模式
对于复杂场景,可使用专家模式直接编辑完整提示词模板,自由调整上下文和变量位置。例如,结合多轮对话历史时,需手动设定历史记录的插入位置。
四、本地模型适配注意事项
- 格式兼容性:本地模型可能对提示词格式(如JSON输出)有特定要求,需根据模型文档调整指令。
- 变量映射:确保提示词中的变量名与本地模型接口参数一致,例如API请求中的
input
字段需与{{input}}
对应。 - 性能优化:若模型响应较慢,可在提示词中限制输出长度或拆分多步交互。
通过以上方法,用户可灵活设计提示词,结合Dify的模型配置和工具集成功能,实现高效、精准的对话助手。更多案例可参考Dify官方模板(如知识库问答、工作流编排)。