基于dify平台批量分析excel格式信息

如何以表格形式批量输入一些信息,然后让大模型以对话应用形式逐条进行推理分析?
这里提供一个分步解决方案,结合 Dify平台功能API调用优化 的思路,既保证效率又降低复杂度:


1. 优先检查 Dify 的「数据集」功能

  • Dify 支持通过「数据集」功能批量上传结构化数据(如 CSV/Excel),并自动分块存储。
  • 操作步骤
    1. 进入 Dify 控制台,创建数据集并上传表格文件。
    2. 在「对话应用」中选择该数据集作为知识库。
    3. 配置提示词模板,要求模型逐条读取数据并分析(例如:请逐行分析以下数据,给出推理结果:{{input}})。
  • 优势:无需编码,直接利用 Dify 的批量数据处理能力,适合非技术用户。

2. 若需定制逻辑:使用 API 批量异步调用

当数据需要复杂预处理或逻辑控制时,可按以下步骤操作:

a. 数据准备
import pandas as pd

# 读取表格文件,转换为 JSON 数组
df = pd.read_excel("data.xlsx")
records = df.to_dict(orient="records")  # 示例输出:[{"字段1": "值1", ...}, ...]
b. 异步批量调用 API
import aiohttp
import asyncio

async def analyze_data(session, data_row):
    prompt = f"请分析以下数据:\n{data_row}\n给出详细推理:"
    async with session.post(
        "https://api.dify.ai/v1/chat-messages",
        headers={"Authorization": "Bearer YOUR_API_KEY"},
        json={"inputs": {}, "query": prompt}
    ) as response:
        return await response.json()

async def main():
    async with aiohttp.ClientSession() as session:
        tasks = [analyze_data(session, row) for row in records]
        results = await asyncio.gather(*tasks)
        
        # 保存结果
        pd.DataFrame(results).to_csv("analysis_results.csv")

asyncio.run(main())

关键优化

  • 使用异步请求 (aiohttp) 提升速度,避免逐条等待。
  • 通过 asyncio.gather 控制并发量(可添加信号量防止速率限制)。

3. 高级场景:结合 Dify 工作流

  • 如果数据需要多步骤处理(如数据清洗 → 分析 → 生成报告),可在 Dify 中创建「工作流」:
    1. 设计一个接收批量输入的工作流。
    2. 使用代码节点遍历数据,调用模型接口。
    3. 输出合并后的分析结果。

注意事项

  1. 速率限制:查看 DeepSeek API 的每分钟调用上限,必要时添加延迟。
  2. 错误重试:在代码中增加重试逻辑(如 tenacity 库)。
  3. 成本估算:提前用样本数据测试,估算 token 消耗量。
  4. 结果存储:建议使用数据库(如 MySQL、MongoDB)替代 CSV,便于后续查询。

推荐方案选择

  • 简单分析 → 直接使用 Dify 数据集 + 提示词模板。
  • 复杂流水线 → API 异步调用 + 数据库存储。
  • 企业级需求 → 联系 DeepSeek 团队咨询批量接口优惠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值