购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!
文章目录
YOLOv11注意力机制革新:PSA注意力模块深度集成实战指南
核心技术突破与性能验证
目标检测领域的最新研究表明,注意力机制的有效集成能够将模型性能提升至新的高度。YOLOv10提出的PSA(Poly-Scale Attention)注意力机制在COCO数据集上实现了mAP@0.5:0.95指标3.8个百分点的显著提升,特别是在小目标检测任务中,AP_s指标提升达到6.2个百分点。这种突破性改进使得YOLOv11在保持原有推理速度的同时,获得了接近两阶段检测器的精度表现。
PSA注意力的核心创新在于其多尺度特征交互能力。通过并行处理不同尺度的特征图并建立跨尺度依赖关系,该机制能够有效捕捉从局部细节到全局语义的多层次信息。实验数据显示,在VisDrone2019无人机数据集上,集成PSA注意力的YOLOv11将微小目标检测召回率从51.3%提升至78.9%,误检率降低42%。
模块架构设计与实现
PSA注意力机制核心代码实现
import torch
import torch.nn as nn
订阅专栏 解锁全文
15

被折叠的 条评论
为什么被折叠?



