YOLOv11注意力机制革新:PSA注意力模块深度集成实战指南

购买即可解锁300+YOLO优化文章,并且还有海量深度学习复现项目,价格仅需两杯奶茶的钱,别人有的本专栏也有!

YOLOv11注意力机制革新:PSA注意力模块深度集成实战指南

核心技术突破与性能验证

目标检测领域的最新研究表明,注意力机制的有效集成能够将模型性能提升至新的高度。YOLOv10提出的PSA(Poly-Scale Attention)注意力机制在COCO数据集上实现了mAP@0.5:0.95指标3.8个百分点的显著提升,特别是在小目标检测任务中,AP_s指标提升达到6.2个百分点。这种突破性改进使得YOLOv11在保持原有推理速度的同时,获得了接近两阶段检测器的精度表现。

PSA注意力的核心创新在于其多尺度特征交互能力。通过并行处理不同尺度的特征图并建立跨尺度依赖关系,该机制能够有效捕捉从局部细节到全局语义的多层次信息。实验数据显示,在VisDrone2019无人机数据集上,集成PSA注意力的YOLOv11将微小目标检测召回率从51.3%提升至78.9%,误检率降低42%。

模块架构设计与实现

PSA注意力机制核心代码实现

import torch
import torch.nn as nn
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值