logistic回归的损失函数(lost function)原理,或者交叉熵损失函数

logistic回归的损失函数和极大似然估计的关系


Φ ( x ) = 1 1 + e − θ x \Phi(x)=\frac{1}{1+e^-{\theta x}} Φ(x)=1+eθx1
我们可以把这个sigmoid函数的值看做y等于1的后验估计概率,也就是:
p ( y = 1 ∣ x ) = Φ ( x ) p(y=1|x)=\Phi(x) p(y=1x)=Φ(x)
那么y=0的时候自然是补事件
p ( y = 0 ∣ x ) = 1 − Φ ( x ) p(y=0|x)=1-\Phi(x) p(y=0x)=1Φ(x)
我们可以把这两个式子简化一下,得到
p ( y ∣ x ) = Φ ( x ) y ( 1 − Φ ( x ) ) 1 − y p(y|x)=\Phi(x)^y(1-\Phi(x))^{1-y} p(yx)=Φ(x)y(1Φ(x))1y
接下来就是极大似然估计:
L ( ω ) = ∏ i = 1 n p ( y i ∣ x i ; ω ) L(\omega)=\prod_{i=1}^{n}{p(y^i|x^i;\omega)} L(ω)=i=1np(yixi;ω)
极大似然估计要求导,如果是连乘式求导不方便,我们可以用对数划开,就可以得到
l ( ω ) = l n L ( ω ) = ∑ i = 1 n y i l n ( Φ ( x i ) + ( 1 − y i ) l n ( 1 − Φ ( x i ) ) l(\omega)=lnL(\omega)=\sum_{i=1}^{n}{y^iln(\Phi(x^i)+(1−y^i)ln(1−\Phi(x^i))} l(ω)=lnL(ω)=i=1nyiln(Φ(xi)+(1yi)ln(1Φ(xi))
这样求出来的参数 ω \omega ω是令 l ( ω ) l(\omega) l(ω)最大的参数,我们是希望这个尽可能小,因为你仔细看就会发现 l ( ω ) l(\omega) l(ω)其实就是损失函数的正值,那我们在前面添上个负号,就可以求得最小的损失函数值。
J ( w ) = − l ( w ) = − ∑ i = 1 n y i l n ( Φ ( x i ) + ( 1 − y i ) l n ( 1 − Φ ( x i ) ) J(w)=−l(w)=-\sum_{i=1}^{n}{y^iln(\Phi(x^i)+(1−y^i)ln(1−\Phi(x^i))} J(w)=l(w)=i=1nyiln(Φ(xi)+(1yi)ln(1Φ(xi))

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值