方差分析python实现

本文介绍了如何使用Python进行单因素和多因素方差分析。通过一个探究施肥对植物生长影响的实验案例,展示了数据分析过程,包括数据处理、描述性统计和方差分析结果。在单因素方差分析中,发现施肥组与对照组之间存在显著差异。而在多因素方差分析中,发现'group'因子的水平对因变量有显著影响,而'people'因子和交互效应不显著。
摘要由CSDN通过智能技术生成

单因素方差分析

在此之间我们先导入数据,

案例:我们探究施肥与否是否对植物的生长有影响,试验为: - 对照组:清水 - 实验组: 某肥料四个浓度梯度,分别是A,B,C,D,施肥一段时间之后测量树高(要控制其他变量保持一致,比如施肥之前的树高要基本保持一致,生长势基本保持一致等等)

在方差分析满足,独立性,正态性,方差齐性,虽然没有满足方差齐性也可以进行非参数的检验,下面我们开始对数据进行处理

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt


df  = {
   'baseline':list(np.random.normal(10, 5, 10)),
      'treat1':list(np.random.normal(15, 5, 10)),
      'treat2':list(np.random.normal(20, 5, 10)),
      'treat3':list(n
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

行秋即离

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值