NLP之结构化数据分类实战入门超详细教程

目录

前言

一、数据加载

1.加载包

2.读取数据

二、数据观察 (EDA)

1.整体情况

1.1 数值型特征基本统计量 

1.2 非数值型特征基本统计量

2.生存率 Y 的信息

2.1 生存率与特征关系

2.2 Pclass 与生存率的关系

2.3 Sex 与生存率的关系

2.4 数值型两两线性相关性

三、特征工程

1.Pclass 特征

2.Name 特征

2.1 将类别少的称谓替换成 other

2.2 转换成 one-hot 特征

3.Sex 特征

4.Age 特征

4.1 缺失值处理

4.2 分段

5.SibSp 和 Parch 特征

6.Ticket 特征

7.Fare 特征

8.Cabin 特征

9.Embarked特征

四、模型训练

1.尝试不同 baseline 模型

1.1 Logistic Regression

1.2 Random Forest

2.超参数搜索

3.特征重要性

4.混淆矩阵

5.模型融合

总结


前言

该实战项目是根据泰坦尼克乘客名单预测最终生还名单。

泰坦尼克乘客名单共包含12个字段:PassengerId(乘客ID)、Survived(生存与否, 0 = No, 1 = Yes)、Pclass (票类别, 1 = 1st, 2 = 2nd, 3 = 3rd)、Name(姓名)、Sex(性别)、Age(年龄)、Sibsp(siblings / spouses 在船上的数量。Sibling = 兄弟姐妹,Spouse = 丈夫妻子)、Parch(parents / children 在船上的数量。 Parent = 父母,Child = 儿女)、Ticket(票号)、Fare(旅客票价)、Cabin(客舱号)、Embarked(上船港口。C = Cherbourg 瑟堡,Q = Queenstown 昆斯敦,S = Southampton 南安普敦)。如下表所示:

PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
103Braund, Mr. Owen Harrismale2210A/5 211717.25 S
211Cumings, Mrs. John Bradley female3810PC 1759971.2833C85C
411Futrelle, Mrs. Jacques Heath female351011380353.1C123S

那么当我们拿到这样一份表格数据,我们该怎么去进行分析其中的属性,得到预测结果呢?接下来请跟着我一步步实现文本分类Baseline的搭建。 


一、数据加载

1.加载包

首先是加载库,具体这些库函数的作用会在下文使用到的时候说明。

import pandas as pd
import numpy as np

# https://seaborn.pydata.org/
import seaborn as sns

# https://matplotlib.org/
import matplotlib.pyplot as plt

from collections import Counter

import warnings
warnings.filterwarnings('ignore')

2.读取数据

接下来是通过pd.read_csv函数读取数据,该函数是用来读取csv格式的文件,将表格数据转化成dataframe格式。可以看到训练数据共有891个样本,里面共包含12个字段,测试数据共有418个样本,并且测试数据相比训练数据少了Survived这一列,因为这就是需要预测的结果。

train_dataset = pd.read_csv('./data/train.csv')
test_dataset = pd.read_csv('./data/test.csv')

print('train dataset: %s, test dataset %s' %(str(train_dataset.shape), str(test_dataset.shape)) )
train_dataset.head(5)

输出结果:

train dataset: (891, 12), test dataset (418, 11)

 

二、数据观察 (EDA)

接下来就就是对输入数据进行分析,可以看到数据里面有那么多字段属性,该如何去分析处理呢?

1.整体情况

首先对整体情况进行分析,通过info()可以清晰的显示包含的字段名、数量及类型。同时可以看到里面分为数值型特征和非数值型特征,接下来分别对其进行分析。

train_dataset.info()

输出结果:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  891 non-null    int64  
 1   Survived     891 non-null    int64  
 2   Pclass       891 non-null    int64  
 3   Name         891 non-null    object 
 4   Sex          891 non-null    object 
 5   Age          714 non-null    float64
 6   SibSp        891 non-null    int64  
 7   Parch        891 non-null    int64  
 8   Ticket       891 non-null    object 
 9   Fare         891 non-null    float64
 10  Cabin        204 non-null    object 
 11  Embarked     889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

1.1 数值型特征基本统计量 

通过select_dtype(exclude=['object'])函数选择数值型特征进行统计,可以分析特征的均值、方差、最小值、最大值等等。

train_dataset.select_dtypes(exclude=['object']).describe().round(decimals=2)

 输出结果:

 PassengerIdSurvivedPclassAgeSibSpParchFare
count891.00891.00891.00714.00891.00891.00891.00
mean446.000.382.3129.700.520.3832.20
std257.350.490.8414.531.100.8149.69
min1.000.001.000.420.000.000.00
25%223.500.002.0020.120.000.007.91
50%446.000.003.0028.000.000.0014.45
75%668.501.003.0038.001.000.0031.00
max891.001.003.0080.008.006.00512.33

通过sns.boxplot()函数显示出一组数据的最大值、最小值、中位数及上下四分位数。

num_attributes = train_dataset.select_dtypes(exclude='object').drop('PassengerId', axis=1).drop('Survived', axis=1).copy()

fig = plt.figure(figsize=(12, 18))

for i in range(len(num_attributes.columns)):
    fig.add_subplot(9, 4, i+1)
    sns.boxplot(y=num_attributes.iloc[:,i])

plt.tight_layout()
plt.show()

输出结果:

箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。它能显示出一组数据的最大值、最小值、中位数及上下四分位数。因形状如箱子而得名。在各种领域也经常被使用,常见于品质管理。图解如下:

1.2 非数值型特征基本统计量

通过select_dtype(include=['object'])函数选择非数值型特征进行统计,可以分析特征的数量、包含不同的值的个数,频次。

train_dataset.select_dtypes(include=['object']).describe()
train_dataset['Sex'].value_counts()

输出结果:

 NameSexTicketCabinEmbarked
count891891891204889
unique89126811473
topSwift, Mrs. Frederick Joel (Margaret Welles Ba...male347082B96 B98S
freq157774644
male      577
female    314
Name: Sex, dtype: int64

2.生存率 Y 的信息

下一步分析生存率Y与哪些特征关系紧密,首先分别取出代表是否生存的0和1进行计算。

is_survive = train_dataset[train_dataset["Survived"] == 1].shape[0]
print(f'Survived is 1 cnt: {is_survive}, ratio: {is_survive / train_dataset.shape[0]}')

not_survive = train_dataset[train_dataset["Survived"] == 0].shape[0]
print(f'Survived is 0 cnt: {not_survive}, ratio: {not_survive / train_dataset.shape[0]}')

输出结果:

Survived is 1 cnt: 342, ratio: 0.3838383838383838
Survived is 0 cnt: 549, ratio: 0.6161616161616161

2.1 生存率与特征关系

通过sns.sactterplot()函数显示生存率与各特征的散点图。

f = plt.figure(figsize=(12,20))

for i in range(len(num_attributes.columns)):
    f.add_subplot(6, 3, i+1)
    sns.scatterplot(num_attributes.iloc[:,i], train_dataset["Survived"])
    
plt.tight_layout()
plt.show()

输出结果:

可以看出不同特征与生存率的关系不同,接下来进一步分析非数值型特征与生存率关系。

2.2 Pclass 与生存率的关系

分析票类别与生存率关系。

train_dataset.groupby('Pclass').Survived.value_counts()
train_dataset[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean()

输出结果:

Pclass  Survived
1       1           136
        0            80
2       0            97
        1            87
3       0           372
        1           119
Name: Survived, dtype: int64
 PclassSurvived
010.629630
120.472826
230.242363

可以看出票类别越高,存活率越高。

2.3 Sex 与生存率的关系

分析性别与生存率关系。

train_dataset.groupby('Sex').Survived.value_counts()
train_dataset[['Sex', 'Survived']].groupby(['Sex'], as_index=False).mean()

输出结果:

Sex     Survived
female  1           233
        0            81
male    0           468
        1           109
Name: Survived, dtype: int64
 SexSurvived
0female0.742038
1male0.188908

可以看出女性存活率高。 

2.4 数值型两两线性相关性

由于数值型特征可以分析两两之间的相关性,所以通过sns.heatmap()函数显示相关性热力图。

correlation = train_dataset.corr()

f, ax = plt.subplots(figsize=(14,12))
plt.title('Correlation of numerical attributes', size=16)
sns.heatmap(correlation, cmap = "coolwarm", annot=True, fmt='.1f')
plt.show()

correlation['Survived'].sort_values(ascending=False).head(15)

输出结果:

Survived       1.000000
Fare           0.257307
Parch          0.081629
PassengerId   -0.005007
SibSp         -0.035322
Age           -0.077221
Pclass        -0.338481
Name: Survived, dtype: float64

由数值大小,可以发现存活率与票类别和票价有很大关系。

三、特征工程

前面已经分析过存活率与各个特征的关系,现在对各个特征进行不同的处理。

先将训练集和测试集简单合并方便处理

train_test_data = [train_dataset, test_dataset]

1.Pclass 特征

因为,由上文的分析,Pclass特征比较重要,而该特征的值为1,2,3,所以有两种处理方法:

  • 保持原状
  • one-hot 处理

2.Name 特征

先观察Name整体数据情况。

train_dataset['Name'].value_counts()

输出结果:

Swift, Mrs. Frederick Joel (Margaret Welles Barron)    1
Vander Planke, Mr. Leo Edmondus                        1
Lundahl, Mr. Johan Svensson                            1
Mineff, Mr. Ivan                                       1
Windelov, Mr. Einar                                    1
                                                      ..
Rothschild, Mrs. Martin (Elizabeth L. Barrett)         1
Morley, Mr. Henry Samuel ("Mr Henry Marshall")         1
Skoog, Miss. Mabel                                     1
Foo, Mr. Choong                                        1
Persson, Mr. Ernst Ulrik                               1
Name: Name, Length: 891, dtype: int64

可以看到每个名字前面都有称谓,而具体姓名可能对存活率没有什么帮助。所以通过str.extract('([A-Za-z]+)\.')函数正则匹配Title。

for dataset in train_test_data:
    dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\.', expand=False)
train_dataset.head(3)

输出结果:

 PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkedTitle
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNSMr
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85CMrs
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNSMiss
train_dataset['Title'].value_counts()

输出结果:

Mr          517
Miss        182
Mrs         125
Master       40
Dr            7
Rev           6
Col           2
Mlle          2
Major         2
Don           1
Ms            1
Jonkheer      1
Capt          1
Countess      1
Sir           1
Mme           1
Lady          1
Name: Title, dtype: int64

可以看到Title主要集中在前几个,所以可以进一步进行处理。

2.1 将类别少的称谓替换成 other

根据上文统计结果,可以将类别少的称谓替换为other。

for dataset in train_test_data:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col', 
                                                 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 
                                                'Other')

    dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
train_dataset['Title'].value_counts()

输出结果:

Mr        517
Miss      185
Mrs       126
Master     40
Other      23
Name: Title, dtype: int64

2.2 转换成 one-hot 特征

dummies_Title = pd.get_dummies(train_dataset['Title'], prefix='Title')
train_dataset = pd.concat([train_dataset, dummies_Title], axis=1)

dummies_Title = pd.get_dummies(test_dataset['Title'], prefix='Title')
test_dataset = pd.concat([test_dataset, dummies_Title], axis=1)
# 删除特征
features_drop = ['Name', 'Title']
train_dataset = train_dataset.drop(features_drop, axis=1)
test_dataset = test_dataset.drop(features_drop, axis=1)
train_dataset.head(3)

输出结果:

 PassengerIdSurvivedPclassSexAgeSibSpParchTicketFareCabinEmbarkedTitle_MasterTitle_MissTitle_MrTitle_MrsTitle_Other
0103male22.010A/5 211717.2500NaNS00100
1211female38.010PC 1759971.2833C85C00010
2313female26.000STON/O2. 31012827.9250NaNS01000

这样就将Name转成Title的独热编码。

3.Sex 特征

接下来处理Sex特征。由上文分析可知,女性存活率高

train_dataset['Sex'].value_counts()

输出结果:

male      577
female    314
Name: Sex, dtype: int64

因为性别没有大小属性,所以将其转成独热编码。

dummies_Sex = pd.get_dummies(train_dataset['Sex'], prefix='Sex')
train_dataset = pd.concat([train_dataset, dummies_Sex], axis=1)

dummies_Sex = pd.get_dummies(test_dataset['Sex'], prefix='Sex')
test_dataset = pd.concat([test_dataset, dummies_Sex], axis=1)

# 删除特征
features_drop = ['Sex']
train_dataset = train_dataset.drop(features_drop, axis=1)
test_dataset = test_dataset.drop(features_drop, axis=1)
train_dataset.head(3)

输出结果: 

 PassengerIdSurvivedPclassAgeSibSpParchTicketFareCabinEmbarkedTitle_MasterTitle_MissTitle_MrTitle_MrsTitle_OtherSex_femaleSex_male
010322.010A/5 211717.2500NaNS0010001
121138.010PC 1759971.2833C85C0001010
231326.000STON/O2. 31012827.9250NaNS0100010

4.Age 特征

由上文可以发现Age特征有较多的缺失值,如何进行对缺失值进行处理也是比较关键的一步。、

缺失值处理有以下三种方法:

  • 缺值样本占比高,直接舍弃/转换
  • 缺值样本适中,非连续特征属性,把 NaN 作为一个新类别
  • 缺失样本不多,拟合填充,众数/均值/中值填充等

4.1 缺失值处理

由于Age特征缺失值不算多,所以我们采取使用随机森林拟合填充。

from sklearn.ensemble import RandomForestRegressor
def set_missing_ages(df):
    age_df = df[['Age','Fare', 'Parch', 'SibSp', 'Pclass']]
    known_age = age_df[age_df.Age.notnull()].values
    unknown_age = age_df[age_df.Age.isnull()].values
    y = known_age[:, 0]
    X = known_age[:, 1:]
    rfr = RandomForestRegressor(random_state=0, n_estimators=2000, n_jobs=-1)
    rfr.fit(X, y)
    predictedAges = rfr.predict(unknown_age[:, 1::])
    df.loc[(df.Age.isnull()), 'Age'] = predictedAges 
    return df, rfr

train_dataset, rfr = set_missing_ages(train_dataset)
train_dataset.info()

输出结果:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 19 columns):
 #   Column        Non-Null Count  Dtype  
---  ------        --------------  -----  
 0   PassengerId   891 non-null    int64  
 1   Survived      891 non-null    int64  
 2   Pclass        891 non-null    int64  
 3   Age           891 non-null    float64
 4   SibSp         891 non-null    int64  
 5   Parch         891 non-null    int64  
 6   Ticket        891 non-null    object 
 7   Fare          891 non-null    float64
 8   Cabin         204 non-null    object 
 9   Embarked      889 non-null    object 
 10  Title_Master  891 non-null    uint8  
 11  Title_Miss    891 non-null    uint8  
 12  Title_Mr      891 non-null    uint8  
 13  Title_Mrs     891 non-null    uint8  
 14  Title_Other   891 non-null    uint8  
 15  Sex_female    891 non-null    uint8  
 16  Sex_male      891 non-null    uint8  
 17  Sex_female    891 non-null    uint8  
 18  Sex_male      891 non-null    uint8  
dtypes: float64(2), int64(5), object(3), uint8(9)
memory usage: 77.6+ KB

对测试集进行拟合。

tmp_df = test_dataset[['Age','Fare', 'Parch', 'SibSp', 'Pclass']]
null_age = tmp_df[test_dataset.Age.isnull()].values
X = null_age[:, 1:]
predictedAges = rfr.predict(X)
test_dataset.loc[(test_dataset.Age.isnull()), 'Age' ] = predictedAges
test_dataset.info()

输出结果:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 16 columns):
 #   Column        Non-Null Count  Dtype  
---  ------        --------------  -----  
 0   PassengerId   418 non-null    int64  
 1   Pclass        418 non-null    int64  
 2   Age           418 non-null    float64
 3   SibSp         418 non-null    int64  
 4   Parch         418 non-null    int64  
 5   Ticket        418 non-null    object 
 6   Fare          417 non-null    float64
 7   Cabin         91 non-null     object 
 8   Embarked      418 non-null    object 
 9   Title_Master  418 non-null    uint8  
 10  Title_Miss    418 non-null    uint8  
 11  Title_Mr      418 non-null    uint8  
 12  Title_Mrs     418 non-null    uint8  
 13  Title_Other   418 non-null    uint8  
 14  Sex_female    418 non-null    uint8  
 15  Sex_male      418 non-null    uint8  
dtypes: float64(2), int64(4), object(3), uint8(7)
memory usage: 32.4+ KB

现在已经对Age特征训练集和测试集进行数值填充了,接下来就是对该特征进行编码。

4.2 分段

由于现在年龄属于离散型变量,数值过多,不好统计分析,所以将其划分成五段:儿童,少年,青年,中年,老年。

train_dataset['AgeBand'] = pd.qcut(train_dataset['Age'], 5)
train_dataset[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean()

输出结果:

 AgeBandSurvived
0(0.419, 19.0]0.453039
1(19.0, 26.0]0.335079
2(26.0, 31.0]0.321212
3(31.0, 40.0]0.430851
4(40.0, 80.0]0.373494

 接下来将Age特征值归于这五类,分成0,1,2,3,4。

train_dataset.loc[train_dataset['Age'] <= 19, 'Age'] = 0
train_dataset.loc[(train_dataset['Age'] > 19) & (train_dataset['Age'] <= 26), 'Age'] = 1
train_dataset.loc[(train_dataset['Age'] > 26) & (train_dataset['Age'] <= 31), 'Age'] = 2
train_dataset.loc[(train_dataset['Age'] > 31) & (train_dataset['Age'] <= 40), 'Age'] = 3
train_dataset.loc[train_dataset['Age'] > 40, 'Age'] = 4
train_dataset.head(3)

 输出结果:

 PassengerIdSurvivedPclassAgeSibSpParchTicketFareCabinEmbarkedTitle_MasterTitle_MissTitle_MrTitle_MrsTitle_OtherSex_femaleSex_maleAgeBand
01031.010A/5 211717.2500NaNS0010001(19.0, 26.0]
12113.010PC 1759971.2833C85C0001010(31.0, 40.0]
23131.000STON/O2. 31012827.9250NaNS0100010(19.0, 26.0]
test_dataset.loc[test_dataset['Age'] <= 19, 'Age'] = 0
test_dataset.loc[(test_dataset['Age'] > 19) & (test_dataset['Age'] <= 26), 'Age'] = 1
test_dataset.loc[(test_dataset['Age'] > 26) & (test_dataset['Age'] <= 31), 'Age'] = 2
test_dataset.loc[(test_dataset['Age'] > 31) & (test_dataset['Age'] <= 40), 'Age'] = 3
test_dataset.loc[test_dataset['Age'] > 40, 'Age'] = 4

# 删除特征
features_drop = ['AgeBand']
train_dataset = train_dataset.drop(features_drop, axis=1)
# test_dataset = test_dataset.drop(features_drop, axis=1)
train_dataset.head(3)

输出结果:

 PassengerIdSurvivedPclassAgeSibSpParchTicketFareCabinEmbarkedTitle_MasterTitle_MissTitle_MrTitle_MrsTitle_OtherSex_femaleSex_male
01031.010A/5 211717.2500NaNS0010001
12113.010PC 1759971.2833C85C0001010
23131.000STON/O2. 31012827.9250NaNS0100010

5.SibSp 和 Parch 特征

由于这两个特征十分相似,都属于家庭成员结构,所以组合 SibSp 和 Parch 作为 FamilySize 特征。

train_dataset['FamilySize'] = train_dataset['SibSp'] + train_dataset['Parch']
test_dataset['FamilySize'] = test_dataset['SibSp'] + test_dataset['Parch']
train_dataset[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean()

输出结果:

 FamilySizeSurvived
000.303538
110.552795
220.578431
330.724138
440.200000
550.136364
660.333333
770.000000
8100.000000

 

# 删除特征
features_drop = ['SibSp', 'Parch']
train_dataset = train_dataset.drop(features_drop, axis=1)
test_dataset = test_dataset.drop(features_drop, axis=1)
train_dataset.head(3)

结果输出:

 PassengerIdSurvivedPclassAgeTicketFareCabinEmbarkedTitle_MasterTitle_MissTitle_MrTitle_MrsTitle_OtherSex_femaleSex_maleFamilySize
01031.0A/5 211717.2500NaNS00100011
12113.0PC 1759971.2833C85C00010101
23131.0STON/O2. 31012827.9250NaNS01000100

6.Ticket 特征

由于票号特征各不相同,没有什么明显作用,所以直接删除该特征。

# 删除特征
features_drop = ['Ticket']
train_dataset = train_dataset.drop(features_drop, axis=1)
test_dataset = test_dataset.drop(features_drop, axis=1)

7.Fare 特征

对于Fare特征,我们采取中值填充的方法,来填补缺失项。

# 具有一等票,二等票等属性

# 中值填充:大部分人买的票
test_dataset['Fare'] = test_dataset['Fare'].fillna(train_dataset['Fare'].median())

# 按照票价分为四份
train_dataset['FareBand'] = pd.qcut(train_dataset['Fare'], 4)
train_dataset[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean()
 FareBandSurvived
0(-0.001, 7.91]0.197309
1(7.91, 14.454]0.303571
2(14.454, 31.0]0.454955
3(31.0, 512.329]0.581081
train_dataset.loc[train_dataset['Fare'] <= 7.91, 'Fare'] = 0
train_dataset.loc[(train_dataset['Fare'] > 7.91) & (train_dataset['Fare'] <= 14.454), 'Fare'] = 1
train_dataset.loc[(train_dataset['Fare'] > 14.454) & (train_dataset['Fare'] <= 31), 'Fare']   = 2
train_dataset.loc[train_dataset['Fare'] > 31, 'Fare'] = 3
train_dataset['Fare'] = train_dataset['Fare'].astype(int)


test_dataset.loc[test_dataset['Fare'] <= 7.91, 'Fare'] = 0
test_dataset.loc[(test_dataset['Fare'] > 7.91) & (test_dataset['Fare'] <= 14.454), 'Fare'] = 1
test_dataset.loc[(test_dataset['Fare'] > 14.454) & (test_dataset['Fare'] <= 31), 'Fare']   = 2
test_dataset.loc[test_dataset['Fare'] > 31, 'Fare'] = 3
test_dataset['Fare'] = test_dataset['Fare'].astype(int)

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(train_dataset[['Fare']])

train_dataset['Fare_scaled'] = scaler.transform(train_dataset[['Fare']])
test_dataset['Fare_scaled'] = scaler.transform(test_dataset[['Fare']])
train_dataset.head(3)

输出结果:

 PassengerIdSurvivedPclassAgeFareCabinEmbarkedTitle_MasterTitle_MissTitle_MrTitle_MrsTitle_OtherSex_femaleSex_maleFamilySizeFareBandFare_scaled
01031.00NaNS00100011(-0.001, 7.91]0.000000
12113.03C85C00010101(31.0, 512.329]1.000000
23131.01NaNS01000100(7.91, 14.454]0.333333
# 删除特征
features_drop = ['Fare']
train_dataset = train_dataset.drop(features_drop, axis=1)
test_dataset = test_dataset.drop(features_drop, axis=1)
train_dataset.head(3)

输出结果:

 PassengerIdSurvivedPclassAgeCabinEmbarkedTitle_MasterTitle_MissTitle_MrTitle_MrsTitle_OtherSex_femaleSex_maleFamilySizeFareBandFare_scaled
01031.0NaNS00100011(-0.001, 7.91]0.000000
12113.0C85C00010101(31.0, 512.329]1.000000
23131.0NaNS01000100(7.91, 14.454]0.333333

8.Cabin 特征

对于客舱号特征与存活率相关性不高,所以我们可以采取直接删除,或者转换特征为是否有客舱号。

# 直接删除
# del train_dataset['Cabin']
# del test_dataset['Cabin']
# 转换特征
train_dataset['Has_Cabin'] = train_dataset["Cabin"].apply(lambda x: 'yes' if pd.isna(x) else 'no')

dummies_Cabin = pd.get_dummies(train_dataset['Has_Cabin'], prefix='Has_Cabin')
train_dataset = pd.concat([train_dataset, dummies_Cabin], axis=1)

test_dataset['Has_Cabin'] = test_dataset["Cabin"].apply(lambda x: 'yes' if pd.isna(x) else 'no')

dummies_Cabin = pd.get_dummies(test_dataset['Has_Cabin'], prefix='Has_Cabin')
test_dataset = pd.concat([test_dataset, dummies_Cabin], axis=1)

# 删除特征
features_drop = ['Cabin', 'Has_Cabin']
train_dataset = train_dataset.drop(features_drop, axis=1)
test_dataset = test_dataset.drop(features_drop, axis=1)
train_dataset.head(3)
 PassengerIdSurvivedPclassAgeEmbarkedTitle_MasterTitle_MissTitle_MrTitle_MrsTitle_OtherSex_femaleSex_maleFamilySizeFareBandFare_scaledHas_Cabin_noHas_Cabin_yes
01031.0S00100011(-0.001, 7.91]0.00000001
12113.0C00010101(31.0, 512.329]1.00000010
23131.0S01000100(7.91, 14.454]0.33333301

9.Embarked特征

对于上船港口特征,我们采取众数填充。

train_dataset.Embarked.value_counts()

输出结果:

S    644
C    168
Q     77
Name: Embarked, dtype: int64

分别对训练集和测试集进行填充以及删除特征。

# 众数填充
train_dataset['Embarked'] = train_dataset['Embarked'].fillna('S')
test_dataset['Embarked'] = test_dataset['Embarked'].fillna('S')

dummies_Embarked = pd.get_dummies(train_dataset['Embarked'], prefix='Embarked')
train_dataset = pd.concat([train_dataset, dummies_Embarked], axis=1)
train_dataset.head(3)
dummies_Embarked = pd.get_dummies(test_dataset['Embarked'], prefix='Embarked')
test_dataset = pd.concat([test_dataset, dummies_Embarked], axis=1)
test_dataset.head(3)
# 删除特征
features_drop = ['Embarked']
train_dataset = train_dataset.drop(features_drop, axis=1)
test_dataset = test_dataset.drop(features_drop, axis=1)
train_dataset_with_passengerid = train_dataset.copy(deep=True)
features_drop = ['PassengerId']
train_dataset = train_dataset.drop(features_drop, axis=1)
test_dataset = test_dataset.drop(features_drop, axis=1)
train_dataset.head(3)

输出结果:

 SurvivedPclassAgeTitle_MasterTitle_MissTitle_MrTitle_MrsTitle_OtherSex_femaleSex_maleFamilySizeFareBandFare_scaledHas_Cabin_noHas_Cabin_yesEmbarked_CEmbarked_QEmbarked_S
0031.000100011(-0.001, 7.91]0.00000001001
1113.000010101(31.0, 512.329]1.00000010100
2131.001000100(7.91, 14.454]0.33333301001

四、模型训练

目前已经对数据进行处理和清洗完,可以挑选合适的模型进行训练预测了。

X = train_dataset.drop(['Survived','FareBand'], axis=1)
y = train_dataset['Survived']
test = test_dataset

X.shape, y.shape, test.shape

输出结果:

((891, 16), (891,), (418, 16))

1.尝试不同 baseline 模型

包括逻辑回归模型、随机森林模型、梯度提升树模型。

from sklearn.linear_model import LogisticRegression
# from sklearn.svm import SVC, LinearSVC
# from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
# 训练集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)

1.1 Logistic Regression

首先是尝试逻辑回归模型

clf = LogisticRegression()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)

输出结果:

0.8291316526610645

五折交叉验证。

# The cross_val_score returns the accuracy for all the folds
# https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation
scores = cross_val_score(clf, X, y, cv=5)
scores

输出结果:

array([0.82681564, 0.82022472, 0.81460674, 0.80337079, 0.84831461])

1.2 Random Forest

然后尝试随机森林模型。

clf = RandomForestClassifier()
scores = cross_val_score(clf, X, y, cv=5)
print(scores.mean())
print(scores.std())

输出结果:

0.822666499278137
0.01495518185277311

2.超参数搜索

通过GridSearchCV函数进行超参数搜索,设定正则项种类L1、L2和正则化力度C。

from sklearn.model_selection import GridSearchCV

param_grid = {
    'C': [0.1, 1.0, 2.0], 
    'penalty' : ['l1', 'l2']
}

clf = LogisticRegression()

grid_search = GridSearchCV(estimator=clf,
                           param_grid=param_grid, 
                           scoring='accuracy',
                           cv=5,
                           n_jobs=-1)
grid_search.fit(X, y)

print(grid_search.best_params_)
print(grid_search.best_score_)

输出结果:

{'C': 2.0, 'penalty': 'l2'}
0.8237900947837551

最好的超参结果:C=2.0,正则项为L2。 

3.特征重要性

可以通过随机森林分类器衡量不同特征的重要程度。

clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
features = pd.DataFrame()
features['feature'] = X_train.columns
features['importance'] = clf.feature_importances_
features.sort_values(by=['importance'], ascending=True, inplace=True)
features.set_index('feature', inplace=True)
features.plot(kind='barh', figsize=(10, 10))

输出结果:

4.混淆矩阵

具体混淆矩阵的定义可以参考混淆矩阵详细介绍。简单地说就是用来衡量的是一个分类器分类的准确程度。

from sklearn.metrics import confusion_matrix
import itertools

clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
y_pred_random_forest_training_set = clf.predict(X_train)
acc_random_forest = round(clf.score(X_train, y_train) * 100, 2)
print ("Accuracy: %i %% \n"%acc_random_forest)

class_names = ['Survived', 'Not Survived']

# Compute confusion matrix
cnf_matrix = confusion_matrix(y_train, y_pred_random_forest_training_set)
np.set_printoptions(precision=2)

print ('Confusion Matrix in Numbers')
print (cnf_matrix)
print ('')

cnf_matrix_percent = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis]

print ('Confusion Matrix in Percentage')
print (cnf_matrix_percent)
print ('')

true_class_names = ['True Survived', 'True Not Survived']
predicted_class_names = ['Predicted Survived', 'Predicted Not Survived']

df_cnf_matrix = pd.DataFrame(cnf_matrix, 
                             index = true_class_names,
                             columns = predicted_class_names)

df_cnf_matrix_percent = pd.DataFrame(cnf_matrix_percent, 
                                     index = true_class_names,
                                     columns = predicted_class_names)

plt.figure(figsize = (15,5))

plt.subplot(121)
sns.heatmap(df_cnf_matrix, annot=True, fmt='d')

plt.subplot(122)
sns.heatmap(df_cnf_matrix_percent, annot=True)

输出结果:

Accuracy: 92 % 

Confusion Matrix in Numbers
[[317  11]
 [ 31 175]]

Confusion Matrix in Percentage
[[0.97 0.03]
 [0.15 0.85]]

5.模型融合

最后将逻辑回归模型、随机森林模型、梯度提升树模型这三类模型组合起来,以此提高预测结果。

logreg = LogisticRegression()
rf = RandomForestClassifier()
gboost = GradientBoostingClassifier()

models = [logreg, rf, gboost]

trained_models = []
for model in models:
    model.fit(X_train, y_train)
    trained_models.append(model)

predictions = []
for model in trained_models:
    predictions.append(model.predict_proba(X_test)[:, 1])

predictions_df = pd.DataFrame(predictions).T
predictions_df['out'] = predictions_df.mean(axis=1)
predictions_df['out'] = predictions_df['out'].map(lambda s: 1 if s >= 0.5 else 0)

输出结果:

 012out
00.2193880.5856900.2327390
10.0639760.1448140.1180230
20.3008550.0000000.0268230
30.9695931.0000000.9911991
40.7717460.8900000.8458491
...............
3520.0639760.1448140.1180230
3530.0533800.0000000.0413880
3540.7815470.9375000.8005731
3550.0639760.1448140.1180230
3560.7375890.7051670.8496281

总结

以上就是结构化数据分类史上最详细入门教程,码字不易,希望大家能够多多点赞收藏,有什么不清晰的地方,也希望能够在评论区留言或者私信。


参考:

贪心学院自然语言处理

混淆矩阵详细介绍

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yunlord

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值