pandas学习笔记(一)

这篇博客介绍了如何使用pandas创建Series数据列,包括无特定索引值和有特定索引值两种方式。接着,展示了通过下标和索引值获取Series元素的方法,并演示了如何修改数据列的索引。内容覆盖了pandas基础操作,适合初学者学习。
摘要由CSDN通过智能技术生成

一、使用pandas.Series创建一维数据列

1.1 使用pandas.Series创建一维数据列的2种方式

pandas.Series创建一维数据列有两种形式:
第一种,无特定的索引值
第二种,有特定的索引值

import pandas as pd

# 无特定的索引值,此时的元素下标是 0, 1, 2,...
fruit_01 = pd.Series(['Apple', 'Banana', 'Peach'])
print(fruit_01)
print('fruit_01的index: ', fruit_01.index)
print('--------------------------')

# 每个元素都可以有特定的索引值  index可以是任意的整数、字符串,所以此时的元素下标就是这里定义的index了
fruit_02 = pd.Series(['Apple', 'Banana', 'Peach'], index=['red_fruit', 'yellow_fruit', 'pink_fruit'])
print(fruit_02)
print('fruit_02的index: ', fruit_02.index)

运行结果:
在这里插入图片描述

1.2 获取数据列的某个元素的2种方式(下标法、索引值法)
import pandas as pd

fruit_02 = pd.Series(['Apple', 'Banana', 'Peach'], index=['red_fruit', 'yellow_fruit', 'pink_fruit'])
print(fruit_02)
print('fruit_02的index: ', fruit_02.index)

# 通过下标去寻找某个元素
print(fruit_02[0])  # 法一
print(fruit_02.iloc[0])  # 法二
print('--------------------------')

# 通过索引值去寻找某个元素
print(fruit_02['red_fruit'])  # 法一
print(fruit_02.loc['red_fruit'])  # 法二

运行结果:
在这里插入图片描述

1.3 修改数据列的下标
import pandas as pd

# 通过data_column_name.index = [, , , ]的方式更改某个数据列的index
colors = pd.Series(['blue', 'pink', 'red'])
print(colors)
print('--------------------------')
colors.index = ['color_01', 'color_02', 'color_03']
print(colors)

运行结果:
在这里插入图片描述
========================================================================

pandas学习笔记(二)之 Series四则混合运算、Series比较运算
pandas学习笔记(三)之 pandas.DataFrame以及它的columns、index

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值