pandas学习笔记(一)
一、使用pandas.Series创建一维数据列
1.1 使用pandas.Series创建一维数据列的2种方式
pandas.Series创建一维数据列有两种形式:
第一种,无特定的索引值
第二种,有特定的索引值
import pandas as pd
# 无特定的索引值,此时的元素下标是 0, 1, 2,...
fruit_01 = pd.Series(['Apple', 'Banana', 'Peach'])
print(fruit_01)
print('fruit_01的index: ', fruit_01.index)
print('--------------------------')
# 每个元素都可以有特定的索引值 index可以是任意的整数、字符串,所以此时的元素下标就是这里定义的index了
fruit_02 = pd.Series(['Apple', 'Banana', 'Peach'], index=['red_fruit', 'yellow_fruit', 'pink_fruit'])
print(fruit_02)
print('fruit_02的index: ', fruit_02.index)
运行结果:
1.2 获取数据列的某个元素的2种方式(下标法、索引值法)
import pandas as pd
fruit_02 = pd.Series(['Apple', 'Banana', 'Peach'], index=['red_fruit', 'yellow_fruit', 'pink_fruit'])
print(fruit_02)
print('fruit_02的index: ', fruit_02.index)
# 通过下标去寻找某个元素
print(fruit_02[0]) # 法一
print(fruit_02.iloc[0]) # 法二
print('--------------------------')
# 通过索引值去寻找某个元素
print(fruit_02['red_fruit']) # 法一
print(fruit_02.loc['red_fruit']) # 法二
运行结果:
1.3 修改数据列的下标
import pandas as pd
# 通过data_column_name.index = [, , , ]的方式更改某个数据列的index
colors = pd.Series(['blue', 'pink', 'red'])
print(colors)
print('--------------------------')
colors.index = ['color_01', 'color_02', 'color_03']
print(colors)
运行结果:
========================================================================
pandas学习笔记(二)之 Series四则混合运算、Series比较运算
pandas学习笔记(三)之 pandas.DataFrame以及它的columns、index