使用Keras预训练好的模型进行目标类别预测

这篇博客介绍了如何利用Keras的预训练模型进行图像识别。通过导入权重、处理图片并进行预测,展示了使用ImageNet数据集的快速预测过程。测试结果显示准确率尚可。
摘要由CSDN通过智能技术生成

前言

最近开始学习深度学习相关的内容,各种书籍、教程下来到目前也有了一些基本的理解。参考Keras的官方文档自己做一个使用application的小例子,能够对图片进行识别,并给出可能性最大的分类。
闲言少叙,开始写代码

环境搭建相关就此省去,网上非常多。我觉得没啥难度

from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np

导入权重,首次会从网络进行下载,不过速度还是挺快的,使用ImageNet的数据集

model = ResNet50(weights='imagenet')

定义一个函数读取图片文件并处理。这里需要安装PLI的库。 pip install Pillow ,不然会报错

def load_image(img_path):
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    return x

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值