poj 1185 炮兵阵地 在n*m的矩阵中放置炮使其不能互相攻击的最多放置炮的个数

Description

司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:

如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。

Input

第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。

Output

仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。

Sample Input

5 4
PHPP
PPHH
PPPP
PHPP
PHHP

Sample Output

6

 

//

 

#include <iostream>
#include<cstdio>
using namespace std;

const int Max = 61;
int dp[101][Max][Max], num[Max], sum[Max],len = 0;
//f[i][j][k]表示第i行状态为num[j],第i-1行状态为num[k]的最大炮兵数,
//num[i]表示第i个状态对应的10进制数,sum[i]表示第i个状态有多少个1,len:有多少个状态
int n,m;
char a[101][11];

void build()   //预处理
{
   len=0;
   for(int i=0;i<(1<<m);i++)
   {
       int tmp=i;
       if(((tmp<<1)&i)||((tmp<<2)&i)) continue;
       num[++len]=i;
       sum[len]=(tmp&1);
       while(tmp=(tmp>>1)) sum[len]+=(tmp&1);
   }
}

bool match(int x, int y)//x表示一行地形代表的10进制数,y是状态对应的10进制数。判断y是否合法
{
   if(x&y) return 0;
   return 1;
}

int main()
{
   while(scanf("%d%d",&n,&m) == 2)
   {
      build();
      for(int i = 1; i <= n; i++) scanf("%s",&a[i]);
      int num2[101] = {0};//地形每一行对应的10进制数
      for(int i = 1; i <= n; i++)
         for(int j = 0; j < m; j++)
            if(a[i][j] == 'H') num2[i] += (1 << j);
      for(int i = 1; i <= n; i++)
         for(int j = 1; j <= len; j++)
            for(int k = 1; k <= len; k++)
               dp[i][j][k] = 0;
      for(int i = 1; i <= len; i++)//初始化第一行
      {
         if(match(num2[1],num[i]))
         {
             for(int j = 1; j <= len; j++)
                dp[1][i][j] = sum[i];
         }
      }
      for(int j = 1; j <= len; j++)//初始化第二行
      {
         if(match(num2[2],num[j]))
         {
            for(int k = 1; k <= len; k++)
            {
               if((num[j] & num[k]) == 0){//判断上下2行会不会相互攻击
               for(int l = 1; l <= len; l++)
               {
                  if(dp[1][k][l] + sum[j] > dp[2][j][k])
                     dp[2][j][k] = dp[1][k][l] + sum[j];
               }
               }
            }
         }
      }
      for(int i = 3; i <= n; i++)//根据方程DP
      {
          for(int j = 1; j <= len; j++)
          {
             if(match(num2[i], num[j]))
             {
                for(int k = 1; k <= len; k++)
                {
                      for(int l = 1; l <= len; l++)
                      {
                         if((num[j] & num[k]) == 0 && (num[j] & num[l]) == 0 && (num[k] & num[l]) == 0 && dp[i-1][k][l] + sum[j] > dp[i][j][k])
                            dp[i][j][k] = dp[i-1][k][l] + sum[j];
                      }
                }
             }
          }
      }
      int ans = 0;
      for(int i = 1; i <= len; i++)//求结果
         for(int j = 1; j <= len; j++)
            if(dp[n][i][j] > ans)
               ans = dp[n][i][j];
      printf("%d\n",ans);
   }
   return(0);
}

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这是一道比较经典的计数问题。题目描述如下: 给定一个 $n \times n$ 的网格图,其一些格子被标记为障碍。一个连通块是指一些被标记为障碍的格子的集合,满足这些格子在网格图连通。一个格子是连通的当且仅当它与另一个被标记为障碍的格子在网格图有公共边。 现在,你需要计算在这个网格图,有多少个不同的连通块,满足这个连通块的大小(即包含的格子数)恰好为 $k$。 这是一道比较经典的计数问题,一般可以通过计算生成函数的方法来解决。具体来说,我们可以定义一个生成函数 $F(x)$,其 $[x^k]F(x)$ 表示大小为 $k$ 的连通块的个数。那么,我们可以考虑如何计算这个生成函数。 对于一个大小为 $k$ 的连通块,我们可以考虑它的形状。具体来说,我们可以考虑以该连通块的最左边、最上边的格子为起点,从上到下、从左到右遍历该连通块,把每个格子在该连通块的相对位置记录下来。由于该连通块的大小为 $k$,因此这些相对位置一定是 $(x,y) \in [0,n-1]^2$ 的 $k$ 个不同点。 现在,我们需要考虑如何计算这些点对应的连通块是否合法。具体来说,我们可以考虑从左到右、从上到下依次处理这些点,对于每个点 $(x,y)$,我们需要考虑它是否能够与左边的点和上边的点连通。具体来说,如果 $(x-1,y)$ 和 $(x,y)$ 都在该连通块且它们在网格图有公共边,那么它们就是连通的;同样,如果 $(x,y-1)$ 和 $(x,y)$ 都在该连通块且它们在网格图有公共边,那么它们也是连通的。如果 $(x,y)$ 与左边和上边的点都不连通,那么说明这个点不属于该连通块。 考虑到每个点最多只有两个方向需要检查,因此时间复杂度为 $O(n^2 k)$。不过,我们可以使用类似于矩阵乘法的思想,将这个过程优化到 $O(k^3)$ 的时间复杂度。 具体来说,我们可以设 $f_{i,j,k}$ 表示状态 $(i,j)$ 所代表的点在连通块,且连通块的大小为 $k$ 的方案数。显然,对于一个合法的 $(i,j,k)$,我们可以考虑 $(i-1,j,k-1)$ 和 $(i,j-1,k-1)$ 这两个状态,然后把点 $(i,j)$ 加入到它们所代表的连通块。因此,我们可以设计一个 $O(k^3)$ 的 DP 状态转移,计算 $f_{i,j,k}$。 具体来说,我们可以考虑枚举连通块所包含的最右边和最下边的格子的坐标 $(x,y)$,然后计算 $f_{x,y,k}$。对于一个合法的 $(x,y,k)$,我们可以考虑将 $(x,y)$ 所代表的点加入到 $(x-1,y,k-1)$ 和 $(x,y-1,k-1)$ 所代表的连通块。不过,这里需要注意一个细节:如果 $(x-1,y)$ 和 $(x,y)$ 在网格图没有相邻边,那么它们不能算作连通的。因此,我们需要特判这个情况。 最终,$f_{n,n,k}$ 就是大小为 $k$ 的连通块的个数,时间复杂度为 $O(n^2 k + k^3)$。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值